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1 Introduction  

This paper addresses the core objectives of WP1 within PILLARS, that is taking stock of the extant 
literature on the potential effects of technological change on labour outcomes and represents 
Deliverable 1.1 (D1.1). We focus on the link between technological change, jobs and tasks.  

The paper makes a crucial contribution to existing reviews of the technology-employment nexus, 
by focusing on the technical and engineering literature, that describes the design of new 
technologies and how these execute tasks and jobs across industries. 

Earlier contributions provide excellent evidence on broadly-defined technologies, such as ICT or 
robots, or more in general innovation.  For example, Léon Ledesma et al. (2010) reviews works that 
have estimated the labour elasticity of substitution of technology. The coefficient of the elasticity 

of substitution of labour to technology (s) is identified for different time periods by relevant scholars 
in the field. Different assumptions are formulated on the nature of technical change (Hicks Neutral 

or Factor augmenting) and several range of variation of s are provided. As such, “technological 
change” is a broad umbrella that encompasses very different technologies.  

Building on a wealth of evidence from several OECD countries, Acemoglu and Autor (2011) provide 
a more nuanced understanding of how (automation) technologies change the composition of 
labour, either by changing the demand for different skills, or by codifying the knowledge required 
to perform working tasks, which become routinised, and therefore easy to perform for a machine 
with little manual intervention. This line of research has introduced the routine-biased approach to 
the study of the technology-employment nexus (Autor, 2019), which has become the prevalent one 
in the field.  

Taking a broader perspective, Calvino and Virgillito (2018) summarise the literature on the impact 
of firm innovation, both as automation (process) and as new products, on employment. They 
outline different compensation mechanisms through which employment adjusts after an 
innovation is introduced, and illustrate recent empirical evidence on such mechanisms. This 
exercise is extended in Montobbio et al. (2022), where the authors take stock of (and organise) the 
last three decades of literature on technology and work distinguishing studies by technology, level 
of analysis, and empirical methods used. 

Unlike this, and the burgeoning number of contributions within the field of labour economics, our 
objective is to “reverse engineer” the labour elasticity to technology and the impacts summarised 
in the economic literature by unpacking technology. We aim at identifying the extent to which 
technologies that are usually combined in a single group, were designed to undergo specific tasks 
in specific sectors, codifying the knowledge to undergo those tasks. We also assess the extent to 
which such technologies were designed to substitute or complement specific tasks.  

To do so, we start by providing a reasoned and fine-grained classification of the emerging 
technologies included in the current black box of “Automation”. This allows us to dig into the 



 

 

3 

idiosyncratic link between sectoral exposure to and adoption of each of these automation 
technologies (or a combination thereof) and labour outcomes in the exposed and adopting sectors.  

The strategy of increasing the granularity of the investigation of both the types of automated 
devices and processes and the types of tasks (and capabilities) that automation replaces on the one 
hand, and the reconfiguration of the tasks affected on the other hand, is the one that we consider 
the most appropriate and novel in the context of PILLARS. In addition, the adoption of a finer level 
of granularity in this analysis will also allow us a higher degree of precision in further, 
complementary analyses of how the labour market outcomes of automation may be mediated by 
international trade and structural changes of economies.  

The present effort of systematic review allows us to unpack the relevant factors that contribute to 
automating jobs and awareness of what specific technologies are affecting labour markets in the 
context of the latest wave of automation.  

Table 1: Empirical Studies of Aggregate Elasticity of Substitution and Technological Change in the US.  

 

Source: Leon-Ledesma et al., 2010 

 

In sum, the main aim of this exercise is to perform a literature review that addresses the following 
research questions: 

- Can emerging automation technologies (as identified in this study) potentially substitute, 
complement, and/or reconfigure specific technical tasks within occupations within 
sectors, that are executed by humans?  
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- What are these specific tasks across sectors? Can we derive insights on the extent to which 
specific industries are exposed to specific automation technologies at higher level of 
granularity compared to the received literature in economics?  

- Can we infer trends and dynamics related to the future of work in relation to the 
contemporary wave of emerging automation technologies, characterised by complex 
interdependency and the pervasive presence of artificial intelligence (AI)?  

 

The paper contributes as follows.  

First, we offer a novel classification of automation technologies;7  

Second, we explore the technical and engineering literature that focuses on each of the classified 
technologies, describing – among other things – prototypes and mature automation devices; 
technical characteristics and conditions of adoption; the extent of automation of the production 
process and success and failure of prototypes, all of which affects occupational tasks and their 
associated levels of skills, knowledge codification, levels of routinisation, degree of substitution or 
complementarity with respect to humans, to various extent.  

For instance, within the main class of Robots are included machines that contribute to real time 
monitoring, autonomous driving, process automation, automated platforms; it features semi-
autonomous robots, service robots, co-bots, swarm robots. In sum, for the family of robots, the 
technologies we explore in the technical literature are both what Sheridan (2016, p.525) labels 
telerobots, namely machines “capable of carrying out a limited series of actions automatically, 
based on a computer program, and capable of sensing its environment and its own joint positions 
and communicating such information back to a human operator who updates its computer 
instructions as required”, and teleoperators, that is machines that “perform manipulation and 
mobility tasks in the remote physical environment in correspondence to continuous control 
movements by the remote human.” To provide a few examples of the variety of technologies in 
development or use, in the analysis we reviewed studies on robotic arms, or welding robots, but 
also robot vehicles for the exploration of underwater mines as well as dismissed nuclear power 
plants. All of these robots might be adopted and used in applications that vary from bar tendering 
to very complex surgical operations, within which they replace or complement tasks that might be 
more or less routinised and involve the use of higher or lower skills or complex knowledge or very 
tacit knowledge.  

Third, the methodology of this review allows organising the collected information into an 
interpretative grid that serves as a general scheme to assess the employment impacts of fine-
grained-defined technologies, and helps to compare whether this most recent wave of automation 

 
7 The classification produced in this paper will also be used to identify technologies in several other Work 

Packages in the whole of the project. 
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is a qualitatively different phenomenon compared to previous waves. For this reason, we frame our 
analysis into a historical background accounting for the evolution of automation technologies. 

The results of the systematic technical literature review will guide the interpretation of the 
economic results throughout PILLARS.  

The paper is structured as follows:  

- We start by offering a brief historical review of previous waves of technological change 
based on mechanisation and electrification (Section 2). This allows to contextualise our 
contribution, which illustrates the processes of automation linked to digitisation in 
comparison to previous waves. This historical contextualisation underpins the rationale of 
our proposed classification.  

- Next, we lead the reader through the journey that led us to design our original 
methodological and empirical approaches to address the objectives above (Section 3 and 
in much greater detail in the Appendix – Section 8). Our methodology represents a new 
benchmark for a multidisciplinary approach to look at the sectoral exposure and adoption 
of automation technologies and their impact on the future of work.  

- Finally, we proceed with a quantitative and qualitative analysis of the content of the 
selected technical papers, along a standardised set of dimensions that are relevant to our 
purposes (Section 4): we focus on which tasks the technologies are designed to perform, 
and in which sectors; the extent to which the technologies codify knowledge and routinise 
tasks; the extent to which they substitute or complement existing jobs; and the skills that 
are needed to deal with them (Section 5). We then summarise the key messages (Section 
6).  
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2 Technical change, automation and employment: A brief 
historical overview 

Contemporary discussions about automation and employment echo a long history of development 
of labour-saving innovation. This history has unfolded in waves of disruption to existing labour 
practices and routines and has been accompanied by anxieties and protests (Mokyr et al., 2015).  

In previous eras, anxieties and protests declined as new occupations were created and economic 
growth continued to raise the demand for labour albeit in very different jobs than those that were 
lost. In every one of these historical occasions of automation anxiety, the claim was made that 
epochal changes were occurring and that if past incidences of concern were raised, the additional 
claim was ‘this time will be different.’ This history resembles the classical fable of the boy who 
cried wolf. At its heart, therefore, discussion of modern forms of automation in the form of robots, 
AI, and other manifestations of information and communication technologies (ICT) pose the 
question – is this time really different, is the wolf going to arrive? 

Answering this question requires several empirical assessments. The most important of these is the 
assessment of emerging capabilities for labour saving devices associated with employment. The 
phrase ‘associated with employment’ may seem odd, but is an acknowledgement that some labour 
saving devices are related to activities that are generally not paid – e.g. household appliances. 
Emerging capabilities are those that extend and deepen the capacity of labour saving devices to 
substitute for employed labour.8 

A considerable amount of attention has been devoted to robotics and AI and this seems to be the 
result of the proclivity of humans to anthropomorphise such devices – so a robot arm or a decision-
making AI algorithm receives greater attention than an automated measuring system for filling 
containers or a logistical system that monitors the location of parcels in transit. In all these cases, 
of course, there are implications for human labour, and it is important to consider capabilities 
broadly to make an accurate assessment of emergent labour-saving solutions. 

A second consideration is the nature of jobs. Job classifications and designations often reduce the 
complexity of the tasks that actual workers do. Consequently, the mapping of capabilities to 
employment may over-estimate the extent that labour-saving technologies may mean job losses. 
In many cases, deploying labour-saving devices results in the reconfiguration rather than 
elimination of jobs – with some net loss of employment and often an increase in output or 
productivity (which can then be reflected in lower prices that increase the size of a market or market 
share). In other words, the net impact on jobs of the introduction of labour-saving devices is 

 
8 Nonetheless, since almost all household services have paid equivalents (e.g. commercial laundry service is 

a substitute for home laundry), there is a two-way interaction between innovations in the paid and unpaid 
version of the services (e.g. home sewing machines are adaptations of commercial sewing machines). 
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complex and difficult to ascertain a priori – it often requires ex post assessment after allowing some 
time for adjustments to occur.9 The complexity of this second assessment is why greater precision 
in assessing emerging capabilities is the most promising empirical strategy. 

A third type of empirical assessment that takes a national or regional unit of analysis involves taking 
account of labour-saving technologies on the international division of labour and hence on a 
country or region’s pattern of international trade.  In the latter two decades of the 20th century and 
well into the present century, companies often resolved make or buy decisions by outsourcing 
production to lower wage countries, off-shoring, that could meet product or service quality 
standards and an immense infrastructure of international logistics was constructed that facilitated 
the movement of parts and finished goods, and in some cases, provided the means to deliver 
services across national or regional boundaries. For example, containerised shipping is not 
generally considered part of automation, but if one thinks about past arrangements for 
merchandise trade, there were many labour saving implications of the growth of this transport 
method. For a variety of reasons including rising wages, the Covid-19 crisis, and perceived inequities 
to domestic workers in consuming countries, automation is taken as an opportunity to ‘re-shore’ 
production. It is, however, also a means for off-shore producers to improve the productivity of 
workers and hence to compete with re-shoring trends. Furthermore, emerging automation 
technologies such as AI have induced new waves of offshoring decisions, this time aimed at 
externalising to the “global south” data work, such as labelling and moderation (Casilli, 2021). Like 
the second consideration, this is also a very complex process whose outcome is very difficult to 
predict. Similarly, however, the examination of labour-saving technologies in terms of capabilities 
is an important first step for an empirical analysis of impact. 

To assess the potential for studying improving capabilities, it is helpful to look a bit more closely at 
the history of labour-saving innovation. Along with the periodic eruption of concerns about the 
automation of jobs, there is a continuing development of the waves of the past (von Tunzelmann, 
1995). Thus, mechanisation continues to develop and indeed is influenced by electrification and 
what we have come to call digitisation influences both the previous waves of development. The 
interactive and cumulative effects are important. For example, early mechanisation was driven 
(literally) by steam power which dictated that plants would be vertically organised due to the 
constraints in distributing motive power horizontally. With electrification, the organisation of 
factories, and the nature of jobs could be transformed, first by extension and development of 
horizontal ‘assembly lines’ and more recently a plethora of different ‘work station’ and ‘machine 
cluster’ groupings in which partially finished goods continue to be brought to workers and then 

transferred for additional work or final packaging. 

The basic principles of mass production involve the creation of interchangeable parts that can be 
assembled rapidly by the movement of these parts to the assembly worker (through an assembly 

 
9 Part of the problem here is that task efficiency is often easier to estimate than production system efficiency 

because the latter involves multiple changes that have synergistic effects. 
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line or other means).  Interchangeability requires manufacturing to precise tolerances and rapid 
movement and assembly operations will be facilitated by flexible arrangements for delivering 
mechanical power to the worker (e.g. pneumatic tools and motorised conveyors). The technologies 
for achieving all these functions were developed early in the 20th century and accompanied the 
surge in development following electrification. 

The 20th century is an extended history of industrial mass production displacing craft production 
in which the individual worker does a variety of operations in fabricating and finishing a product.  
The basic logic of mass production has been extended to operations in service industries such as 
processing payments in banks, the use of a battery of power tools and other equipment in dentistry, 
or the surgical operating theatre. In many services, there are residual craft elements that continue 
to rely on the skill of the ‘operator.’ In some of these cases, the logic of mass production has been 
reversed so that the customer becomes the operator as is the case with automated teller machines 
(ATMs) which largely displace the role of bank clerks who previously received and dispensed cash 
(Savona and Steinmueller, 2013). The ATM operates under the control of the customer rather than 
the bank employee, substituting customer ‘labour’ for the labour of the bank clerk. 

Mechanisation using electrical motors (hence, electrification) was also progressively refined 
throughout the 20th century. In many cases this involved the redesign of products to make them 
more compatible with mechanised technique – milk bottles became tetra-packs, butchers parcelled 
out meat in shrink wrap packaging, and stockings were knit and finished with very little human 
intervention. The idea of co-opting customer labour was further refined by shipping products with 
‘some assembly required’ and Ikea’s refinement of ‘flat pack’ furniture that could be transported by 
the customer from large retail showroom/warehouses and assembled by the customer at home. 

It is important to note that parts assembly-based mass production is not the only means by which 
industrial progress has been achieved. The evolution of technique stemming from the exploitation 
of petroleum as a source of fuel and as a feedstock for chemical manufacture involved several 
innovations that, together, created the petroleum refinery. Petroleum refineries are examples of 
continuous flow manufacturing in which human intervention is only required to monitor and 
control the flows of raw petroleum to finished products (e.g. petrol, diesel fuel, asphalt base, fuel 
oils, heating oil, paraffin and liquefied petroleum gas). In chemical production, a mixture of 
continuous flow and ‘unit process’ technologies are employed with the transfer of materials 
undertaken by pumps or, in some cases, conveyors. These basic operations have been extended to 
a variety of other industries such as food processing, ore refining, and pharmaceutical production. 

What is important to observe about this brief account of technological history is that processes of 

automation involving mechanisation and electrification have been underway for an extended 
time. In many cases, labour saving innovations have already greatly improved individual worker 
productivity and most of the job losses in global North manufacturing have already occurred, not 
so much as the result of outsourcing of production, but by the combined influences of 
mechanisation and electrification. 
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Digitisation combined with international logistics and transport have continued this process.  The 
ability to codify designs, arrange supply contracts, communicate about production issues, trace and 
monitor transport of parts and partially finished goods, and efficiently manage inventories in 
relation to the flow of production and consumption have all been greatly improved by digitisation. 
This is the result of digital technologies layering up on existing techno-economic systems and 
lowering a series of costs: search, tracking, replication, verification, and experimentation among 
others (Goldfarb and Tucker, 2019). These, in turn, lead to reshaping economic actors’ incentives 
and, therefore, to reallocation of working activities. 

The uncertainties that now confront economies throughout the world arise from the technological 
potentials of newer generations of cyber-physical systems that have the potential to transform the 
mass production paradigm, as they are technology systems integrating sophisticated hardware (i.e. 
sensors) and software (i.e. prediction or scheduling algorithms) to executing functions in a flexible 
manner. These new potentials involve new physical technologies such as additive manufacturing 
which is evolving from a substitute for hand machining and other forming processes for the tools 
and dies involved in mass production toward efficient direct production of final parts and products. 
If this trajectory were to continue, it is possible to imagine city or even neighbourhood-based 
‘manufactories’ capable of producing a very wide range of products for business and household 
use. Competing with this possibility is an adaptation of the ‘fabless integrated circuit company’ 
which produces designs that can be used to create physical products in larger-scale flexible 
manufacturing facilities. The location of these larger-scale facilities are one of the greatest 
uncertainties concerning the future of international division of labour, as well as a policy theme. For 
example, it is possible to imagine an initial period of development in which currently labour-
intensive factories in middle income countries are automated with this new generation of 
technologies.  Alternatively, since the new technologies will be far less labour intensive, it is 
possible to imagine a major trend to reshoring of production.10 

In the countries that are currently most wealthy, the absolute dominance of service sector 
employment raises questions about the role of new technologies in replacing these service 
sector jobs. For example, the historical occupation of data entry operator has experienced dramatic 
reductions as new technologies for data acquisition including user data entry displace centralised 
facilities for data entry and filing, creating a ‘data cloud’ which itself offers a myriad of opportunities 
for the application of machine-learning AI to create predictive models and, increasingly, to manage 
data-intensive service provision. As we mentioned, last-century’s data entry occupations have been 
replaced with data labelling and moderation tasks executed thorough microwork platforms, often 

resorting to cheap labour in quasi-monopsonist settings. In any case,  a key challenge is to improve 
the human-computer interface so that opportunities, choices and services can be presented in 
ways that are customised to the users’ needs. The flexibility and scalability of robotic equipment 

 
10 The recent disturbances in international supply chains associated with the Covid-19 pandemic have 

provided a motivation for reconsidering the international division of labour and rebalancing off-shoring 
with new domestic capabilities.   
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has major implications for employment in ‘customer facing’ jobs, if what is facing the customer is a 
cyber-physical system rather than a human being. As in past waves of automation, it seems likely 
that the initial applications will be specialised to tasks that can be clearly specified (e.g. picking 
items from warehouse shelves to fulfil an online order). However, impacts can cascade – in the same 
example, if packing and delivery also are performed by autonomous systems (e.g. robotic stocking 
and packing and autonomous vehicle delivery), employment implications become much more 
significant. Assessing the potential for the emerging new wave of automation, and whether this time 
it will be different, begins with a careful assessment of the emergence of new capabilities in the 
cyber-physical systems that are the current subjects of research, development and initial 
deployment. 
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3 Methodology 

This section and the related Appendix (section 8) outline the original methodology we designed for 
the study. The presentation is framed as a chronological journey that the research team has 
endeavoured in to identify and refine in-the-making the literature search and selection protocol. 
This allows us to articulate in detail the rationale underpinning our methodological choices and the 
solid grounding of the selected technical literature that supports our findings. We trust this to 
become a methodological template for any in-depth investigation of multidisciplinary literature 
aimed at shedding light on such a complex phenomenon.  

In particular, as we detail in the Appendix, we reconstruct the step-by-step decisions we took to deal 
with the criteria of classification of digital automation technologies, from the initial scoping to the 
devising of a final classification that has served as a standard for the whole PILLARS project, 
particularly WP3 which deals with the new and emerging technologies. We then detail the 
articulated search strategy of the relevant papers, from how the classification devised informed 
keywords selection to the scrupulous manual screening of the relevant papers, to the identification 
of the further relevant keywords that served as controlled terms to expand the initial selection of 
core papers.  

We organize the literature review in six main steps, which are summarised in Figure 1 and further 
detailed in the Appendix (Section 8). 

First, given differences among technologies and their applications, we have run a separate review 
for each different family of emerging automation technologies. We identify eight families (in 
parenthesis their acronym): 

A. Robots (R) – technologies that sense and (autonomously) act based on data 
B. Physical data acquisition technologies (DA) – technologies that harvest and record 

information 
C. Software based data management (DM) – technologies for storing, protecting, 

managing/handling and acquiring data 
D. Computing (C) – technologies used to compute/calculate 
E. AI & Intelligent Information System (AI) – technologies using algorithms and advanced 

methods to make sense out of the data 
F. Additive manufacturing (AM) – technologies that produce bottom-up based on digital 

models 
G. Networking (N) – technologies for communicating between machines (data transmission) or 

connecting machines 
H. User interface (UI) – technologies for human interaction with machines or data 

 

Second, for each of the technology families we identify relevant records in the Scopus database 
(Figure 1). We use literature and our own expertise to build a seed query to search titles, abstracts 
and keywords of publications. As we are not interested in technological development per se, but in 
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what technology can do, and in particular what tasks it can perform, we build a three-part query 
that combines keywords identifying (i) the technology (e.g. robot OR human worker), (ii) its functions 

and applications (e.g. process OR routine), and (iii) the tasks that it can perform (e.g. interact OR 
recognize OR weld).11 We selected only documents published after the year 2000, in the form of 
original articles, reviews, or conferences papers, and in the top percentiles by citations (by year). 
The number of percentiles varies across technologies and queries in order to maintain a comparable 
and manageable number of documents to screen manually (approximately over 500 documents per 
technology). 

Third, to maximise precision in our selection of relevant papers, we manually screen a sample of 
papers to decide on inclusion in the sample (Figure 1). Each document’s title and abstract is 
screened by two independent reviewers, and conflicting cases decided by a third reviewer. Detailed 
screening rules are reported in the Appendix, but mainly consist in filtering out papers that are not 
about the technology of interest, nor about production of goods and services (e.g. house 
appliances), which are only conceptual, or do not clearly indicate what task the technology 
performs, even if they clearly describe the skills needed. For example, a paper on robots that can 
move in a small space, avoiding obstacles, but with no mention of their application to specific tasks 
(e.g. picking objects from shelves and bringing them to a different point of a warehouse) is excluded. 

Fourth, to increase recall, we expand our initial query to documents in Scopus that, although not 
including in their title and abstract terms considered in our initial query (for example because they 
refer to tasks that we did not consider initially) may be relevant to the development of the 
technologies in the family under consideration. We take advantage of the Engineering Index 

Thesaurus, a thesaurus of controlled engineering terms that are manually allocated to documents 
in Scopus. Using the relevant documents selected after manual filtering (see previous step), we use 
text mining metrics (TF-IDF) to select from the thesaurus the engineering terms that better identify 
these relevant papers (and the technologies they illustrate) (Figure 1). We combine engineering 
terms from the thesaurus that are ubiquitous, i.e. appear in documents related to different 
technologies (e.g. automation OR intelligent robots), and that relate to distinctive technologies (e.g. 
crops OR architectural design). We then use these engineering terms to run a second search in 
Scopus to identify papers that we did not find with our initial query, but which are assigned relevant 
engineering terms. 

Fifth, to maximise precision in our selection of relevant papers, we manually screen this sample of 
papers – the expansion set – as described in the third step (Figure 1). 

Sixth, and finally, as a result of manual screening of both the first (third step above) and expanded 

(fifth step above) searches, we are left with a number of selected documents per technology family 
(Figure 1), each referring to one or more technology. In our final step, we read and code the full text 

 
11 A full list of the detailed queries is available in the Appendix, Table .  
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of the selected publications, extracting the following information about the technology, where 
available:  

1. Level of adoption of the technology  
2. Development stage of the technology 
3. Routinisation: the ability to perform a task without any human intervention  
4. Knowledge codification: the ability to make all instruction explicit (i.e. codified)  
5. Whether the technology works with people, symbols or objects (based on Reich, 1991)  
6. Level of skills required to use the technology 
7. Whether the technology substitutes or complements humans  
8. Whether the technology improves the product/service, or the process to produce 

products/services 
9. Intended sectors of application 
10. Intended tasks that the technology performs 
11. Geographical area of development/use 
12. Type of organization that is likely to use the technology  
13. Size of the organization that is likely to use the technology 

 

We describe all these steps in detail in the Appendix (Section 8). 

The reading and coding allow to describe, for each technology family, whether the technologies 
identified in the literature potentially substitute, complement humans, and/or reconfigure specific 
technical tasks within occupations and sectors; and what are these specific tasks across sectors, 
and which are the specific industries are exposed to specific automation technologies and 
routinisation of tasks. The codification allows us to quantify our discussion of the literature, which 
provides some qualitative understanding of tasks, sectors, and type of impact that these different 
technologies may have on employment. When relevant, we split results into two sub-periods, 
according to the year of publication, before and after 2010. This is expected to give some indications 
on whether there has been any changes in the intended use and potential impacts of the 
technologies under analysis 
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Figure 1: Flow-chart of the literature review process 
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4 A quantitative and qualitative analysis of technical papers on 
emerging technologies: the interpretative grid 

This section outlines the variables we collected when evaluating and classifying the final sample of 
records. The analysis organises the collected information into an interpretative grid, with the aim 
of producing a general scheme to assess impacts of fine-grained-defined technologies. Hence, the 
results come from the construction of a qualitative typology derived from reading the papers, which 
can be measured by the relative frequency of each observation across typologies. More precisely we 
codify the records according to the characteristics detailed below. We then look at frequencies of 
papers focused on the specific technology family across the relevant job-related characteristics.  

This type of analysis (qualitative reading and coding in a pre-structured grid) allows us to conduct 
a quantitative analysis (frequencies of occurrence; cross-tabulations) of the number of records that 
can be classified along each sub-category, both in terms of row-share of number of records and 
along the time dimension. The Appendix reports all the categories of classification for each of these 
characteristics (see tables Table -A and Table -A).  

 

- Exposure and adoption: 

 
1. Level of Adoption of the technology. Technologies experience different levels and patterns 

of adoption, which depend on an array of variables ranging from actors’ features, 
propensities and thresholds, to the structures of interconnections in adopters’ networks up 
to the very technical features of the technologies (Rogers, 2010). In particular emerging 
technologies (Rotolo et al., 2015), especially when articulated and complex, can show 
different adoption levels for different sub-technologies. In our work, we classify this variable 
in low, medium and high, depending on whether the technology is a prototype or displays a 
level of maturity that is ready to be adopted.  

2. Development (function design) stage. This can be at the stage of invention; conceptual 
definition; or, more downstream, at the experimental level (prototype); definition of product; 
at the stage of ready to deploy; or mature. We use this variable to capture the level of maturity 
of the technologies (Albert, 2016) and to map in a stylised manner the stages of new product 
(or process) development (Takeuchi and Nonaka, 1986).  
 

- Tasks reconfiguration:  
 

3. Task/routinisation. Technologies execute functions at the level of single operations or 
activities, with different degrees of autonomy. This ability impacts the very structuring of how 
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products and services are made, i.e. the ‘factory physics’ of production (Hopp and Spearman, 
2011); the reach of automation and its particular deployment depends on how much given 
tasks can be routinised (and the relevant knowledge for the activities to be executed codified 
– see below for another variable capturing this), which in turns also depends on how single 
operations can be separated or consolidated (Combemale et al., 2021). For our purposes, we 
classify the technology on the basis of the ability to perform a task without any human 
intervention, including the possibility that a task is further decomposed into an automated 
and humanly supervised segments.  

4. Task/knowledge codification. This variable classifies the technology on the basis of the 
ability to make all instruction explicit (i.e. codified) without the use of any tacit knowledge. 
The capability to develop and deal with tacit know-how is a cornerstone of the economics of 
knowledge (Cohendet and Steinmueller, 2000; Cowan et al., 2000; Foray and Steinmueller, 
2003) and so far usually considered a monopoly of human action. 

5. Works with People/Symbols/Objects. This characteristics is borrowed by the taxonomy 
suggested by Robert Reich (1991) and considers whether a technology deals mainly with 
people, integrating the use of objects or targeting the use of symbols. This simple 
categorisation has a very interesting (potential) explanatory power, as it allows to assess 
whether recent emerging technologies such as artificial intelligence algorithms, that seem to 
be lowering prediction costs in tasks usually involved in symbol manipulation, produce a 
similar impact compared to, for instance, robots.  

 

- Compensation mechanisms:  

 

6. Skills. The idea that technologies display different degrees of complementarity with humans 
along the skills distribution has been widely explored by the literature on skill-biased 
technological change, and refined by the approach of routine-biased technical change (Autor 
2015; 2019; Ciarli et al., 2021; Goldin et al., 2020). With this variable we measure the extent to 
which the technology may need low, medium or high skills to operate, as described by the 
authors.  

7. Complement vs. substitute. Technologies might (traditionally) complement or replace the 
use of human labour, producing what have been labelled respectively a productivity or 
substitution effect (Acemoglu and Restrepo, 2019). Recent work has been identifying the 
conditions and the mechanisms for the decrease of the labour share (hence, the substitution 
of human labour by capital) both at the aggregated and firm level (Ray and Mookherjee, 2021; 
Acemoglu et al., 2020). We record papers with a dummy indicator complement or substitute; 
in addition, we consider the possibility to identify segments of tasks (or sub-tasks) that are 
replaced and others within the same task that are complemented. In these cases records are 
identified as both substitute and complement.  
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8. Time saving or product/process innovation. The many sorts of automation technologies 
we cover in the analysis intervene in different areas of firms’ activities; some are process 
improvement aiming at restructuring production, provide efficiency gains such as cost 
reduction or time saving, others are embedded into the design of new product offerings. We 
record this information to understand the direction of change within economic actors, loosely 
referring to Savona and Steinmueller (2013) for services. 

 

- Sector, tasks and geographical areas of application:  

 

9. Geographical area of provenience. This codes the technology described in the academic 
publication on the basis of where the technology has been deployed.12 Table -A in the 
Appendix includes all values.  

10. Sector of application. This variable organises technologies according to the main sector of 
use based on 3-digit ISIC classification for manufacturing and 2-digit for other sectors; it is 
usefully cross-referenced with the tasks of application (point 11 below).  

11. Task of application. This variable classifies technologies on the basis of what work task(s) it 
is likely to replace or be integrated into. We code these using O*NET aggregate work activities 
list. Table -A in the Appendix describes all values the variable can take.  

 

The database of technical documents constructed within this Deliverable is very rich in information 
that can be selectively focused on. However, for the purpose of a readable, digestible and focused 
discussion, the analysis reported in the remainder of the paper will focus on a subset of the 
characteristics above, namely 3 and 11 (Task of application and routinization)13, 7 and 8 
(employment compensation and time saving/process innovation) and 10 (sector of 
application). We use evidence from the other variables to complement the main discussion on 
tasks and sectors. 

For what concerns the other dimensions, and particularly the maturity and development stage of 
the technologies, the large majority of papers describes robots at the experimental stage (almost 
two thirds), with only a minority at the mature stage. The prototypes and the conceptual stages 
have similar shares, interestingly regardless of the time span considered (e.g. before or after 2010).  

 
12 This dimension is hard to codify as often the place/country of first development or application of the 

technology is not explicitly mentioned or deducible. When this is the case, the geographical area is 
attributed through the affiliation of the author. Because of this, we have not taken into consideration this 
category when looking at the results.  

13 There is a high correlation between routinising the activity and codifying the knowledge to perform a task, 
so results are similar for variable 4. 
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This confirms the relevance of our final selection, which privileges technologies which are currently 
emerging and have not yet been fully deployed. This reflects also the fact that engineering and 
technical publications over the last two decades are concentrated in novel applications of 
robotisation, mainly at the experimental stage, which most likely requires the academic community 
recognition to move forward towards downstream stages of development.  

Interestingly, the numbers and shares of papers describing data driven technologies is slightly less 
concentrated in the experimental category, with a higher presence in the mature stage of 
application, despite the large majority of papers have been published after 2010. This might be 
linked to the fact that the adoption and use of data acquisition, management techniques, 
particularly those that are software-based, have a higher pervasiveness in terms of range and 
sectors of applications than the robots’ applications. This might imply that the degree of novelty of 
publications is not necessarily correlated to the stage of technology development and the technical 
features of the robot-related automation, but in the domain of (service) use, rather than the 
technical feature of the software application used for data management (Saviotti and Metcalfe, 
1984).  

The large concentration of papers in the experimental stage of technological development might 
imply an idiosyncratic boundary of the tasks and labour functions actually affected by these 
technologies, due to their degree of diffusion and sectoral exposure being by definition still 
embryonal. We will focus on this in the next section.  

Some of the technologies will be displaying a low number of contributions, others are more fully 
explored by engineering and technical scholarly work, and this affects the number of papers that 
figures in the frequency analysis. This emerges from the tables, nonetheless we provide a 
meaningful comparison of the above dimensions across all the technologies.  

5 Results: Tasks, complementarity and sectoral exposure  

5.1 Tasks within work activities and complementarity with humans  

We first discuss the focus of the sampled technical literature on specific work activities (tasks) by 
technology family, and the degree to which the technologies in each family is designed to 
complement workers. We report results for the variables related to tasks of application (11 as per 
above) and complementarity (7). We are assessing how technical scholarly work has described how 
each technology is designed to execute tasks that are categorised according to the O*NET 
classification (Table 2), and whether such design is aimed at complementing or substituting the 
participation of humans (Table 3). In particular, Table 2 shows the shares of papers that refer to 
each of the work activity, for each of the technology families. Work activities are sorted according 
to the geometric mean over all technology families, reported in the last column. A colour coding 
helps visualising where the higher shares are across technologies and tasks. The last row indicates 
in both tables the number of papers coded and the number of observations. The latter might be 
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higher than the number of papers as each paper might refer to more than one task and/or more 
than one frequency of complementarity or substitution.   

The eight technologies differ substantially in the tasks they are designed to execute, particularly 
between robots and the data technologies (DM, DA, AI, C) – what we label the ‘data value chain’. 
Around 50% of the papers mention that robots carry out tasks related to “Handling and Moving 
Objects” or “Identifying Objects, Actions, and Events”. Technologies pertaining to the data value 
chain of DA, DM, AI and Computing are similar to each other with respect to the work activities they 
carry out. However, there are important differences also among those. 

Amongst the selected papers, most of the applications of robots relate to production processes, 
welding, surgery, supporting human mobility (i.e. passive robotics for the elderly), inspecting 
objects in human non-friendly environments (i.e. underwater ship hulls, mines), moving vehicles 
(especially in agriculture-related activities) and, indeed, moving objects (from large – i.e. with 
robotic cranes – to nano – i.e. robotic tweezers to move cells). Instead, DM technologies are 
developed to organise and process information in different fields, such as scheduling in warehouses 
and manufacturing pipelines, purely intangible information systems to manage personnel, but also 
systems to organise workload in scientific laboratories. DM technologies papers also refer to digital 
assistants as front-end interfaces to provide humans access to information. Papers on DA 
technologies often display a more engineering flavour, especially as DA technologies are more 
embedded in devices (e.g. sensors), with several studies exploring new materials to build sensors 
or fields of application, in particular monitoring at different levels, from infrastructure to floods and 
spillage down to healthcare applications. 

A substantial number of papers in AI refer to “Identifying Objects, Actions, and Events”, and 
“Estimating the Quantifiable Characteristics of Products, Events, or Information”, tasks hardly 
mentioned by papers in DA and DM. However, only a few discuss technologies for “Getting 
information”, which are instead widespread among papers discussing DA and DM technologies and 
Networking. The highest share of sampled papers describes how these technologies carry our tasks 
of “Processing Information” for DM, ‘Analysing data’ for AI and a less complex or analytic task such 
as “Monitoring Processes and Materials” for DA. The other technologies are related to a more 
distributed number and type of tasks. This evidence reinforces the suggestion that some of these 
technology families act in coordination, within more complex technology systems. In particular, it 
appears clear a “division of labour” between AI technologies, executing prediction tasks, and data 
acquisition and management technologies, preparing the ground for AI to perform its functions by 
respectively collecting and organising data. 

Networking is very similar to DM, and other data intensive technologies, while Additive 
Manufacturing shows a hybrid profile, displaying tasks that are common to other data technologies, 
such as “Getting information” and “Analysing data and information” but it results designed also to 
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execute more material tasks, such as “Controlling Machines and Processes” and “Controlling 
Machines and Processes”.  

None of the automation technologies we study seem (yet) to be executing tasks implying 
interactions with people, from “Coaching and Developing others” to the management of human 
resources.  However, this could be precisely the result of division of labour in an activity in which 
humans and technology are complementary. In fact, papers in DM include some which are 
discussing solutions for information systems in the domain of personnel management – in our 
analysis, these studies are assigned to tasks of information processing as they aid humans to 
organise information. “Algorithmic HR” might be captured by AI technologies, but it appear not to 
be a major emerging technology in our sample. 

Overall, in terms of tasks executed, Robots technologies seem to show a quite different profile 
compared to other technology families, except for the tasks of “Identifying objects, actions and 
events” which is highly represented also in AI papers. Despite some similarities, unpacking the 
idiosyncratic characteristics of the technical and design functions underpinning each of the 
technology family allows understanding how they singularly or jointly execute specific tasks. A 
cluster of tasks related to physical activities are expectedly exclusively linked to robots, such as 
“Identifying” and “Moving” objects, actions or “performing general physical activities”. 
Nonetheless, as mentioned, the identification part is also common to AI technologies. Interesting is 
also what emerges in the data value chain technologies, whose scholarly work describes execution 
of tasks in sequences, such as “Getting”, “Processing” and “Analysing” information. 

In a nutshell, in terms of tasks it is possible to trace differences down to the very technological 
nature (and trajectories) of software and hardware technologies, with the former progressively 
executing tasks related to data, prediction, and decision, and the latter evolved in the direction to 
provide increasing malleability and degrees of freedom in the execution of physical work. 
Technology families standing in-between this continuum, such as networking and additive 
manufacturing, tend to be less polarised in the type of tasks executed. This point leads us to a 
further insight: the distribution of tasks performed tends to be less concentrated the more hybrid 
the technologies are. Tasks that are overlapping across technologies are often obtained from 
papers that describe technologies that integrate a core family with features from other families – 
for example, consider robots augmented by computer vision sensors and algorithms, information 
systems and databases accessible by handheld devices (which belong to the human interfaces 
class), digital assistants that merge AI capabilities with data management technologies, or data 
acquisition-based sensors that expand the skills of surgery robots. All these examples suggest that 

further advances in the convergence of our technologies into more sophisticated cyber-physical 
technology systems might extend the task coverage for each family. 
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In what follows, we go beyond idiosyncrasies and commonalities across the eight technologies in 
the specific tasks they execute, and look at the complementarities and substitution with human 
activity (Table 3).  

A low share of robot technologies mentioned in at least 5% of the coded papers are designed to 
complement humans. Around 50% of the coded papers mention that robots that carry out tasks 
related to “Handling and Moving Objects” or “Identifying Objects, Actions, and Events” will 
complement workers.  

Most of the remaining papers discuss activities designed to replace workers, with a small share 
(approx. 15%) designed to both complement and substitute workers, for instance in the case of 
automation that requires human supervision. Only a limited share (20-30%) of papers on robots 
unveils a design that complements human workers for tasks such as “Controlling Machines and 
Processes” or “Performing General Physical Activities”. In the case of “Controlling Machines and 
Processes”, though, 50% of the papers mention both complementing and substituting, while in the 
case of “Performing General Physical Activities” the combination of complementing and 
substituting is mentioned in only approximately 15% of the papers. This suggests that different 
cohorts of robots with different degrees of capabilities co-exist, with some only improving efficiency 
and facilitating workers’ operation, while others fully automate processes, for example by opening 
the way for flexible factory-floors with reconfigurable assembly systems (Kousy et al, 2018).  

Unlike robots, more than 80 of the papers that discuss the data value chains – DM, AI and DA and 
Computing – suggest that these data-intensive technologies complement human workers in all 
main work activities that they carry out, such as ‘Analysing Data or Information’, ‘Processing 
Information’ and ‘Getting Information’. There are some exceptions, such as DA technologies related 
to ‘Inspecting Equipment, Structures, or Material’: in this case, 60% of the papers suggest that DA 
complement workers, with the remaining share of the papers suggesting substitution, as in the data 
filler operator example mentioned earlier on.  

In the case of Additive Manufacturing, Networking and User Interface, a significant share of papers 
show that they are complementing humans for tasks such as to “Controlling Machine and 
Processes” and “Monitoring processes”, revealing that their design is still very much functional (and 
most likely dependant on) the intervention of humans. “Identifying object” too seems to be a task 
that is executed by these technology and highly complementing the human factor. 14 

In sum, the data value chain technologies (Acquisition, Management, AI and Computing) share a 
high degree of complementarity with humans, which are the repository of the tacit knowledge 
needed to complement automated and routinised data acquisition and processing. Human 

knowledge and activities in these tasks acts as an enabler or, better, an essential factor. Even tasks 

 
14 The highest shares of 100% usually reveal that the technology described in the paper describes a process 

that is complementing a single task.  
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usually considered as conquest ground for automated systems, such as scheduling work and 
activities, seem to be grounded by the importance of non-codified knowledge, which acts as a 
‘reverse salient’ – a front of activity that generates bottlenecks.  

The technologies that, even visually with a higher number of cells in green,  show a low-medium 
shares of paper describing complementarity with humans are certainly Robots, though Networking 
and User Interface complement humans in a lower number of cases related to the “Monitoring 
processes” and “Judging the value of things”.   

Following Agrawal et al. (2019), labour is replaced when capital substitutes prediction and decision 
tasks. When automating prediction-related activities raises instead the returns of employing 
humans in decision tasks, we should expect complementary relationship between technology and 
labour. This is precisely what we find in the case of the data value chain technologies, that lowering 
the cost of collecting, processing, and using data to predict (or, more generally, to offer insights and 
analytics), increase the value of human labour, still relevant to take decisions. In the case of robots 
(and at a limited extent also additive manufacturing), automating physical tasks might spill-over to 
decision making tasks as well – as in the case of autonomous vehicles in unfriendly environments – 
reinforcing the substitution effect. 
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Table 2 – Share of papers describing tasks executed within work activities by technology family.  

 

Notes: the table reports the share of papers that were coded as describing tasks related to each of the O*NET broad work activities under column (1), for each of the 
following families of technologies: robots (2), Software based data management (3), Physical data acquisition technologies (4), Computing (5), AI & Intelligent Information 
System (6), Additive Manufacturing (7), Networking (8) and User Interface (9). The final row reports the total number of papers that were coded in relation to each work 
activity: one paper can refer to more than one work activity, therefore the number of work activities is larger than the number of papers. 
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Table 3 – Share of papers describing the degree of complementarity of tasks with human workers by technology family.  

 

Notes: the table reports the share of papers that suggest that the technology complements workers, related to each of the O*NET broad work activities under column (1), 
for each of the following families of technologies: robots (2), Software based data management (3), Physical data acquisition technologies (4), Computing (5), AI & 
Intelligent Information System (6), Additive Manufacturing (7), Networking (8) and User Interface (9). The final row reports the total number of papers that were coded in 
relation to each work activity: one paper can refer to more than one work activity, therefore the number of work activities is larger than the number of papers. 
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5.2 Sectoral exposure, process innovation and routinisation  

Table 4 shows the share of papers that discuss technologies related to specific sectors for each 
technology family. Table 5 reports the share of papers that describes, within each sector, whether 
and how technologies improve efficiency, as opposed to those that improve the quality of the 
good/service. Table 6 shows the share of papers that describes, within each sector, whether and 
how technologies routinise activities.  

Considering the sectors mentioned in at least 5% of the publications, the academic literature 
focuses on a few, recurrent sectors across technologies. While different technology families apply 
to several work activities, they are all relevant only for a small subset of sectors. The most common 
across technologies is “Professional, scientific and technical activities (M)”, particularly DA, DM, and 
User Interface. This feeds R&D activities that allow prototypes, technical design, and subsequent 
deployment. Beyond “Professional, scientific and technical activities (M)” (21% of the papers across 
all technologies), there are important differences across technology families. While Robots and 
Additive Manufacturing focus on Manufacturing (C), tasks related to “Analysing Data or 
Information”, executed by DM, AI, DA and Computing are discussed in relation to “Information and 
communication (J)”, while ‘Human health and social work activities (Q)’ show a high concentration 
of papers focusing on AI (39%), Additive Manufacturing (37%) and User Interface (33%), and on 
average 16% of all papers across technologies. The number of papers concentrating on applications 
of these technologies in the realm of Public Health (rather than social work activities) is large, 
fortunately. The sector focus is similar also for tasks related to “Processing Information”, carried 
out by DM, AI, Computing, DA and Networking. Highly human interaction-intensive and creative 
services as in Arts, entertainment and recreation, do not seem to be the focus of papers 
concentrating on any of the digital automation and data driven technologies.  

As we could identify the sectors that are most spread across technologies, we can also explore the 
spread of each technology across sectors. A simple way to do that is to calculate a concentration 
metric for each column of Table 4. We compute the Hirschman-Herfindal Index (HHI) and find that 
the most concentrated technology (HHI=0.34) is Computing, largely specific to the information and 
communication sector, followed by additive manufacturing (HHI=0.31), which concentrates in 
manufacturing and human health and social work activities. This evidence needs to be interpreted 
with caution: for example, it is well known that computing technologies are ubiquitous and the 
engine of the current techno-economic paradigm (Lombardi and Vannuccini, 2022). What we 
identify here is the field of application of ongoing technological developments, which likely 
contribute to intra-sector advances before spurring economy-wide consequences. In the case of 
additive manufacturing, instead, the evidence point at an interesting trend – the use of this 
technology family to print devices used in the medical field (i.e. “smart” skin patches). 
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Each sector shows a varying degree of task concentration. The uniqueness of tasks within a sector 
can be considered as a rough indicator of the degree of exposure of a sector to fully-fledged 
automation across the task-spectrum, which should occur in particular when the tasks are 
routinised. Conversely, a low concentration of tasks within each sector means that a higher number 
of tasks remain executed by humans, either because their specific mode of execution in a particular 
sector is not prone to automation or because routinisation and knowledge codification has not yet 
progressed enough in the context of that sector-task tandem. In sectors with lower robot-powered 
task concentration, existing operational practices, barriers or bottlenecks might provide protection 
from the risk of being fully exposed to automation-related substitution.  

In general, there is a large gap in terms of task concentration (uniqueness in specific sectors) 
between physical and non-physical tasks, most likely concentrated in several manufacturing 
sectors rather than in a few services. The non-physical ones – such as administration, information 
processing, scheduling activities - are comparatively less diffused.  

Table 5 and 6 show large differences in how the technologies concentrated in different sectors serve 
the purpose of increasing efficiency via process innovation or higher routinisation of tasks: we find 
a larger focus on improving efficiency in AI, DA and Networking papers, whilst Robots, DM and 
Computing place a comparatively stronger focus on improving the product or service. Some of the 
technologies, as referring to specific sectors, did not show relevant information on process 
innovation.  

Interestingly, Table 6 shows that a considerable share of papers describes AI and DA as routinising 
tasks in most personal services (Accommodation and Food (I) Administrative support (N), Real 
Estate (N) and Finance (K)), which are the most pervasively exposed to data-intensive technologies. 
Despite the differences in relation to complementing labour, it is interesting to note that robots and 
DM technologies have a lower tendency to mention the routinisation of activities than AI and DA. 
This suggests that, although they do not substitute workers, these technologies are able to make 
these tasks highly replicable. 

The share of papers that indicate a substantial routinisation role are concentrated in DA, DM, AI and 
Computing, the most data driven technologies, and mainly in the Information and Communication 
sector.  

In relation to routinisation and knowledge codification, we also look at a further dimension that 
qualifies the above dimensions. We classify tasks within occupations on the basis of how the use of 
technologies involves interactions mainly with people, things or symbols. This characteristics 
is borrowed from an interesting - and fairly under-estimated – contribution by Robert Reich in his 

book “The Work of Nations. Preparing Ourselves for 21st Century Capitalism” (Reich, 1991). Quite 
evocatively, Reich considers the North American labour markets at the dawn of the 1990s, and 
divides jobs into three categories. The “symbolic analytic” services, the “routine production” 
services, and the “in person” services.  
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According to Reich (1991), the Symbolic Analysists are workers that mainly interact with 
technologies through symbols, and hence include, among other, what has been alternatively 
classified as “Knowledge Intensive Business Services”: engineers, lawyers, scientists, academics, 
consultants and other intellectual activities. The routine and the in-person services respectively 
interact with technologies through Things –performing what has later been considered routinised 
tasks (as assembly workers, data processors, machine supervisors) – and through People, as in 
personal services, such as care workers, essential services, janitors and so on.  

We predict that this classification will offer a good explanatory power in making sense of how the 
automation technologies considered here will reconfigure the tasks in terms of human-machine 
composition.  

Currently, technical papers show that the non-automated, non-routinised and complex tasks are 
less likely to interact mainly with things or people, unlike routinised ones, which tend instead to 
involve interactions with things.  

For instance, in the case of robots, technical papers published between 2000 and 2020 describe 
prevalently robotisation processes that affect a very few number of tasks, which tend to mainly 
target interactions with things and people. Robots interacting with symbols belong to the future 
and, likely, to the interaction of symbol manipulation with more complex technology systems 
integrating both physical and data processing and analysis capabilities.  

Data driven technologies are described in the literature as having a high number of interactions with 
symbols, rather than people or things, or a combination of symbols and things. A joint interactions 
with people things and symbols is infrequent across all technologies.  
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Table 4 – Share of papers describing the sector of adoption by technology family.  

 

Notes: The table reports the share of papers that were coded as describing industries related to each NACE sector (column 1), for each of the following families of 
technologies: robots (2), Software based data management (3), Physical data acquisition technologies (4), Computing (5), AI & Intelligent Information System (6), Additive 
Manufacturing (7), Networking (8) and User Interface (9). The final row reports the total number of papers that were coded in relation to each sector: one paper can refer 
to more than one sector, therefore the number of observations is larger than the number of papers. 

 

 



 

 

29 

Table 5 – Share of papers describing the process versus quality improvement by sector and technology family.  

 

 

Notes: The table reports the share of papers, for each technology family and sector, which suggests that the technology improves the efficiency in producing the 
good/service, as opposed to improving their quality. The final row reports the total number of papers that were coded in relation to each sector: one paper can refer to 
more than one sector, therefore the number of observations is larger than the number of papers 
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Table 6 – Share of papers describing the routinization of tasks by sector and technology family.  

 

 

Notes: The table reports the share of papers, for each technology family and sector, which suggest that the technology allows to routinise the task on which they focus. 
The final row reports the total number of papers that were coded in relation to each sector: one paper can refer to more than one sector, therefore the number of 
observations is larger than the number of papers. 
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6 Key messages and final remarks 

This paper identifies, selects, and reviews a large sample of academic papers from engineering and 
technology-related disciplines, and presents and discusses eight different families of automation 
technologies that execute or complement tasks across different sectors. Our proposed 
classification of the technologies allows to offer evidence on a much more granular representation 
of digital automation than received studies in economics and social sciences.  

Therefore, this study is able to provide an articulated understanding of how the technical design of 
automation technologies that have been emerging since the early 2000s may affect different 
aspects of employment, exploiting first-hand information from scholarly work by technology 
designers and developers.  

One of the main contributions of this paper is a methodological benchmark to approach from a 
multidisciplinary angle a literature review of technical papers that focus on the conception, 
experimentation and development of emerging technologies. We offer a detailed reconstruction of 
the methodological journey that has led to a novel classification of emerging automation 
technologies, and a grounded multi-steps literature review of technical records that are most 
relevant for our purpose of fine graining technologies and tasks affected. This is included in Section 
3 and in a detailed Appendix in Section 8.  

We then provide a quantitative descriptive analysis of the qualitative codification of the papers 
extracted, focusing on the relevant employment-related variables illustrated at length in Section 4.  

Overall, the analysis of the technical literature provides a rich zoomed-in picture of the economic 
evidence, which usually clusters automation in one single technology with either a substitution 
effect on routinised tasks requiring codified knowledge or a productivity effect resulting from 
labour compensation mechanisms.  

We summarise the key messages below.  

First, automation technologies, including within the same family, are fundamentally different in 
their design and the tasks they can execute.  These tasks tend to be specific to one sector, but often 
extend to several sectors (such as analysing data or information) and might have different impacts. 
As highlighted in the introduction to this paper, the objective of unpacking different technologies is 
important and is so also in view of predicting the next trends of the future of work when the range 
of automation technologies changes shape, composition and effects over time.  

Second, the number of sectors that attract the development of most automation technologies is 
still relatively limited, but expanding. From this type of work, policymakers can form expectations 
about what occupations and industries are more likely to be affected by digital automation 
technologies in the future. For instance, Software-based data management but more in general 
data-intensive technologies, hence also AI and Data acquisition technologies, are more pervasive in 
services than in manufacturing sectors, though we expect new applications to emerge, particularly 
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as a result of the novel regulatory framework emerging at the EU levels, such as the Digital Market 
Act, the Digital Service Act and the Data Act. This calls for policy to extend its focus from robots to 
other, more pervasive, forms of automation.  

Third, automation related to robotisation is likely to become more and more substitutive of tasks 
performed by humans, notwithstanding some of these technologies are at the very experimental 
stage, as the literature on robots published post 2010 shows that they tend to become more 
substitutive than they were at the beginning of the years 2000s. In contrast, so far data-intensive 
technologies are consistently more complementary to tasks performed by humans. As it turns out, 
this is driven by the type of service produced, which is an input to other activities, rather than by the 
inability of routinising tasks, which is also higher for data-intensive technologies. 

Fourth, the use of codified or tacit knowledge is fairly associated with routinisation, whereby the 
most routinised tasks performed by these technologies seem to make use of codified more than 
tacit knowledge. Also, data intensive technologies interact largely more with symbols, rather than 
with things or people. In fact, the technologies included in this category emerge as covering tasks 
of processing and analysing information, unlike robotisation-based automation is described as 
mainly interacting with things or people, in this latter case when employed to automate processes 
that are supervised or managed by humans.  

Finally, the future of work depends on technologies’ evolution, their idiosyncrasies, their stage of 
development and adoption, the specific sectors that are mostly exposed to each of them, the 
specific tasks they complement or replace, and finally their convergence towards complex 
technology systems integrating both software and hardware components. Labour market policies 
should rely on evidence on digital automation at a greater level of granularity to be properly 
informed about their heterogeneous effects on tasks reconfiguration within sectors. 
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8 Methodological Appendix  

This section details the final literature search protocol, which is the outcome of several iterations, 
both to define technology families, as well as to select queries and their expansions. This allows us 
to articulate in detail the rationale underpinning our methodological choices and the solid 
grounding of the selected technical literature that supports our findings. We propose this as a 
methodological template for any in-depth investigation of multidisciplinary literature that seeks to 
shed light on such a complex phenomenon.  

The remainder of the Appendix is organised as follows. The first part (Section 8.1) describes the 
rationales behind the classification into families of automation technologies that will be used across 
several PILLARS Work Packages, particularly WP3 which deals with the phase of emerging 
technologies. The second part (Section 8.2) details the complex and rigorous search strategy for 
relevant papers, which attempts to maximise both precision (selection of relevant papers) and 
recall (covering as many technology as are available in each family). We describe the basic query to 
search for documents in Scopus, the manual screening of the sampled papers, the identification of 
the relevant engineering controlled terms to expand the initial selection of core papers to a more 
comprehensive set.  

The search protocol described in this Appendix has been exemplified with reference to two 
technology families: Robots and Data Management. The protocol has been fully consistency applied 
to all the technologies, though not reported here (except the original and expansion queries 
reported in Table 11-A) for reasons of space.  

8.1 Identification of Automation Technologies 

To identify the families of digital technologies that contribute to the automation of production 
processes in all sectors of the economy that involve workers (e.g. excluding households’ digital 
appliances). We followed four steps: 

a) First, team members listed and classified technologies based on the literature in economics 
and management and on their expert judgement. This was followed by two validation 
exercises. 

b) We used reports and academic publications from academia, industry, government and the 
public on Industry 4.0, future of work, and automation, to build a concordance table 
between the classification developed in step (a) and classifications used by experts across 
sectors. 

c) We constructed a control classification, developed by experts in a different research team 
in the PILLARS project, to build another concordance table with the classification developed 
in step (a) 

d) We studied the concordances between our first classification, the classifications used by 
experts across sectors (b) and the second PILLARS expert classification in point (c) and we 
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produced a final classification. We discussed this final classification with the whole PILLARS 
consortium and made minor refinements. 

 

For replicability, we describe each step in detail below. 

 

8.1.1 First classification 

The initial classification into families of digital automation technologies was performed based on 
the literature and the expertise of the research team, especially by Professor Ed Steinmueller. This 
classification was guided by industry observation and writing in the areas of industrial economics, 
innovation studies and technology history. It included eight classes, listed in Table -A, each with a 
list of prominent technologies. To some extent, the list of prominent technologies is arbitrary and 
reflects an early 21st century understanding of uses and purposes of these technologies. As we 
move through this century, there will certainly be additional subclassifications (e.g. ‘robots’ 
introduced into human bodies to diagnose or repair). The reported subclassifications reflect areas 
where substantial investments have occurred and that have a potential or demonstrable effect on 
human skills or employment. 

 

Table 1-A: Classification of digital automation technology families (first classification) 

Codes Automation technology families and prominent technologies 
A Robots (Primarily stationary) 
1 Machine vision and real-time monitoring 
2 Selective Compliance Assembly Robots (SCARA)  
3 Articulated 
4 Cartesian 
5 Dual Arm 
6 Co-bots (non-mobile) 
7 Swarm robotics  
8 Cylindrical 
9 Service robotics 
  
B Robots (Primarily mobile) 
1 Co-bots (mobile) 
2 Semi-autonomous (e.g. bricklaying) 
3 Automated platforms/vehicles 
4 Tunnel boring and mining robots 
5 Submersible robots 
6 Drones 
7 Space vehicles and rovers 
8 Service robotics 
  
C Data Acquisition Technologies 
1 IoT (including Radio-frequency identification (RFID) systems) 
2 Scanners 
3 Sensors 
4 Remote Sensing 
5 GPS 
6 CCTV 
7 Scientific and engineering instruments 
8 Healthcare instruments (including Personal health instrumentation) 
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D Cloud, PC and Smartphone Computing and Services 
1 Big data analytics 
2 Gaming 
3 Streaming services 
4 Automated storage and retrieval systems 
5 Database systems 
6 Relational databases  
7 Computer architectures  
8 Cryptography and security 
9 5G 
  
E AI (not directly as a cloud service) 
1 Simulation 
2 Machine learning (predictive systems)/ Deep Learning 
3 NLP 
4 Machine vision (Image recognition) 
5 Expert systems 
6 Speech recognition and production 
7 Text recognition and production 
8 Machine Translation 
  
F Additive manufacturing (using any material – e.g. powder metallurgy as well as bioplastic filament) 
1 Prototyping (including CAD) 
2 Tools production 
3 Production at scale 
  
G User interface 
1 Conventional input devices (e.g. keyboard, mice, pens, webcams) 
2 Display devices (conventional) 
3 Augmented reality 
4 Haptics and Tele-haptics 
5 Virtual Reality (including 3D Visualisation) 
6 Touchscreens/kiosks for customer interface 
7 Sound technologies (e.g. noise cancellation) 
8 Neuro-scanning 
  
H Other 
1 Machine Tools 
2 Wireless Identification Tags/Beacons 

 

8.1.2 Concordance with classifications in the literature 

A first validation of the classification presented in Section 8.1.1 (and Table -A) was done by reviewing 
existing classifications of automation technologies published by different organisations across 
different sectors of the economy: private sector, patent authorities, policy organisations, and 
academia (Figure -A). The literature refers to automation technologies under several frameworks, 
the most common one being Industry 4.0. We focused on documents especially focused in 
understanding the adoption of automation technologies and their impact on labour, specifically the 
automation of tasks. The selected documents include three OECD reports (OECD, 2017a; OECD, 
2017b; OECD, 2018), one report each from the EC (Servoz, 2019), WIPO (Keisner et al., 2015), and EPO 
(Ménière et al., 2017)), a report compiled by Nesta and Pearson (Bakhshi, 2017), the IBM 
classification (https://www.ibm.com/topics/industry-4-0), and three academic papers (Balland & 
Boschma, 2021; Martinelli et al., 2021; Zolas et al., 2021)). 
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Figure 1-A: Reference documents from four sectors of the economy 

  

 

From each of the documents selected we extracted the technology classification proposed. 
Whenever available, we also collected a list of prominent technologies within each family. Based on 
this information, we created a concordance table to compare our first classification with the ones 
received from the literature. The rationale for this exercise was to identify potential gaps, missing 
technologies or entire families of technologies, or mis-classifications of prominent technologies 
into the technological families proposed in our first classification. The concordance table is 
included below in Table 2-A. 

 

Table 2-A: Concordance table of automation technologies classification (first classification and 
literature) 

Literature  First classification 

Report  Families Sub-categories  Family  
Technolog

y 

WIPO 2015 

Robotics - Remoted controlled  

Telepresence robots 

B 

  

Remoted controlled humanoid robots    

Robotic assisted surgical devices    

Exoskeletons    

Drones  B.6 

Robotics - Semi autonomous   B B.2 

Robotics - Fully autonomous    B B.3 

Artificial Intelligence    E E 

Pearson-Nesta, 2017 
| The Future of Skills 

Robots    A/B   

Artificial Intelligence    E E 

Big data   D D.1 

Internet of Things    C C.1 

OECD STI 2017 Mobility   B   

 

 
OECD	2017a 
OECD	2017b 
OECD	2018 
Servoz,	2019 

 
Keisner	et	al.,	2015 

Ménièr,	2019 

   Private	
sector 

 

Scientific	
literature 

 

Policy	
Bodies 

 

Patent	
organisati

ons 

  

Zolas	et	al.,	2021	(NBER	WP) 
Martinelli	et	al.,	2020	 
Balland	&	Boschma,	2021 

Bakhshi	et	al.,	2017 
IBM	Industry	4.0	classification 
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Cloud computing    D   

Internet of Things    C C.1 

Artificial Intelligence    E   

Big data analytics    D D.1 

AI Future of Work | 
European 

Commission, 2019 

Artificial Intelligence  
General AI: broad cognitive abilities  

E 
  

Narrow AI: human-level intelligence    

Robotics    A/B   

Internet of Things    C C.1 

Blockchain technology        

New and advanced materials    F N/A 

Autonomous devices    B   

Balland & Boschma, 
2021  

Additive manufacturing    F   

Artificial Intelligence    E E 

Augmented reality   G G.3 

Autonomous robots    B   

Autonomous vehicles     B   

Cloud computing    D   

Cybersecurity       

Machine tools   D  N/A 

Quantum computers    D  N/A 

System integration    D D.6 

OECD Next 
Production 

Revolution 2017 

Simulations   E E.1 

Artificial Intelligence    E E 

System integration    D D.6 

Big data   D D.1 

Cloud computing    D   

Internet of Things    C C.1 

OECD 2018 | 
Transformative 

technologies & jobs 
of the future 

Artificial Intelligence    E E 

Internet of Things    C C.1 

Blockchain technology    
  

  

IBM IR 4.0 
classification 

Internet of Things   C C.1 

Cloud computing   D   

AI and machine learning   E E / E.2 

Edge computing   D N/A 

Cybersecurity       

Digital twin   D N/A 

Zolas et al., 2021 
(NBER) 

Augmented reality   G G.3 

Automated guided vehicles (AGV)   B B.3 

Automated storage and retrieval systems   D D.4 

Machine learning   E E.2 

Machine vision   E E.4 

Natural language processing   E E.6 



 

 

41 

Radio-frequency identification (RFID) 
system   

C 
C.1 

Robotics   A/B   

Touchscreens/kiosks for customer interface   G G.7 

Voice recognition software    E E.6 

Martinelli et al., 2020  

Internet of Things    C C.1 

Big data / Industrial analytics    D D.1 

Cloud manufacturing    D   

Robotics   A/B   

Artificial Intelligence    E E 

Additive manufacturing    F F 

European Patent 
Office 

Core technologies  

Hardware D/G   

Software C/D/E   

Connectivity D/G   

Enabling technologies  

Analytics D D.1 

Security D   

AI E   

Position determination D   

Power supply N/A?   

3D systems G   

User interfaces G   

Application domains  
Home, Personal, Enterprise, 
Manufacturing, Infrastructure, 
Vehicles 

N/A 
  

 

There were few discrepancies between our first classification and list of technologies and the 
various classifications produced in the literature by different groups of experts.  

Terms in yellow cells identify prominent technologies which were not explicitly mentioned in our 
first classification, but which were covered in existing families either as synonyms or as 
subcategories of a wider technological group. These were mainly technologies part of Cloud, PC and 
Smartphone Computing and Services (D), such as Quantum computers, Edge computing, Digital 
twins, System integration and position determination (part of big data analytics). New and 
advanced materials was classified under additive manufacturing (F). And Position determination 
was classified as one of the enabling technologies part of the broader big data analytics, also in 
family D. 

Terms in red cells identify prominent technologies which were not explicitly mentioned in our first 
classification, and which are not easily classified under our first classification. These are Blockchain 

technologies and Cybersecurity technologies. As we discuss below, following our second 
comparison, we define a new technology family called ‘software based data management’, which 
also includes Blockchain technologies and Cybersecurity technologies. 
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8.1.3 Control classification 

The control classification into families of digital automation technologies was performed based on 
the literature and the expertise of the research team preparing a Delphi survey on the emerging 
automation technologies. This classification was also guided by industry observation, the literature, 
and the OECD classification of ICT (Inaba and Squicciarini, 2017). It included only seven classes, 
listed and described in Table -A, each with a list of prominent technologies.  

 

Table 3-A: Classification of digital automation technology families (control classification) 

Code Automation technology families and prominent technologies 
A Robotics 
1 Programmable Robots 
2 (Semi) Autonomous Robots 
3 Service Robotics 
4 Exoskeletons 
5 Autonomous Vehicles 
6 Drones 
7 Swarm Robotics 
8 Remote sensing 
9 Smart Equipment 
  
B Networking 
1 Streaming Services 
2 5G 
3 Internet of Things 
4 Wireless Identification Tags/Beacons 
  
C Data Management 
1 (Relational) Databases 
2 Big Data 
3 Cryptography 
4 Cyber Security 
5 Blockchain 
6 Cloud Storage 
7 Data Mining/Scraping 
  
D Computing 
1 Edge Computing 
2 Cloud Computing 
3 Quantum Computing 
4 High Performance Computing 
5 Grid Computing 
6 Simulation/Digital Twins 
  
E Artificial Intelligence 
1 Machine/Deep Learning 
2 Predictive Maintenance 
3 Natural Language Processing 
4 Machine Vision 
5 Text Recognition and Production 
6 Speech Recognition and Production 
7 Machine Translation 
  
F Additive Manufacturing 
1 3D printing 
2 Computer Aided Design 
  
G Human Machine Interaction 
1 Virtual Reality (VR) 
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Code Automation technology families and prominent technologies 
2 Augmented Reality (AR) 
3 (Tele) Haptics 
4 Neuro-control (Brain Controlled) 
5 Holograms 
6 Telepresence 
7 Voice control 
8 Visual Interfaces (Displays, monitors, touchscreens) 
9 Biometrics 
10 Apps 
11 Gamification (Serious games) 

 

8.1.4 Final classification 

 

After building a concordance table between the first (step a), Section 8.1.1) and the control 
classifications (step c), Section 8.1.3 ), experts who developed the two classifications met to discuss 
results from the two concordance table and converge on a final, integrated, classification. As a final 
robustness check, this final table was discussed with the entire consortium. The final classification 
of automation technologies contains nine families and is reported in Table -A. 

 

Table 4-A: PILLARS classification of emerging automation technology families 

A Robots (Articulated, Cylindrical, Cartesian, Dual Arm, SCARA) 
1 Machine vision and real-time monitoring 
2 Co-bots 
3 Swarm robotics  
4 Service robotics 
5 Semi-autonomous (e.g. bricklaying) 
6 Automated platforms/vehicles 
7 Tunnel boring and mining robots 
8 Drones 
9 Robotic vehicles (including Space vehicles and rovers, autonomous vehicles, submersible robots) 
10 Exoskeletons 
11 Robotic Process Automation (RPA) (including software robots) 
  
B Physical Data Acquisition Technologies 
1 Scanners 
2 Sensors  
3 Remote Sensing 
4 GPS 
5 CCTV 
6 Scientific and engineering instruments 
7 Healthcare instruments (including personal health instrumentation) 
8 Data scraping 
  
C Software-based Data management 
1 Database systems 
2 Relational databases (including API) 
3 Cryptography, security, and blockchain mining) 
4 Big data analytics 
  
D Computing 
1 Automated storage and retrieval systems (including cloud storage) 
2 Computer architectures (including edge computing, cloud computing, HPC, grid computing) 
  
E AI (not directly as a cloud service) & Intelligent Information System 
1 Simulation 
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2 Machine learning (predictive systems)/ Deep Learning 
3 NLP 
4 Machine vision (image recognition) 
5 Expert systems 
6 Speech recognition and production 
7 Text recognition and production (including machine translation) 
  
F Additive manufacturing (using any material e.g. powder metallurgy and bioplastic filament) 
1 Prototyping (including tools production, production at scale) 
2 3D printing 
3 CAD/CAM (prototype and/or production) 
  
G Networking 
1 IoT (including Radio-frequency identification (RFID) systems) 
2 Wireless communication (including 5G) 
  
H User interface 
1 Conventional input devices (e.g. keyboard, mice, pens, webcams) 
2 Display devices (conventional) 
3 Augmented reality (including holograms) 
4 Haptics and Tele-haptics (including all tele-operations of physical machinery by human operator requiring feedback) 
5 Virtual Reality (including 3D Visualisation) 
6 Touchscreens/kiosks for customer interface 
7 Sound technologies (e.g. noise cancellation) 
8 Neuroscanning 
9 Gamification 
  
I Other 
1 Machine Tools 
2 Factory control system 

 

As any other classification, the one presented in Table -A is based on a specific interpretation of 
these digital automation technologies. Our classification serves the purposes of the analysis of the 
literature in this paper, and the analysis of emerging technologies both using documents metadata 
(publications and patents) and using expert’s view in the Delphi survey. To provide more clarity on 
our classification, below we provide our own definition and description of these technologies by 
family. It should also be noted that several of the prominent technologies listed in Table -A may be 
allocated in more than one family. As any classification, the boundaries between the technology 
families proposed here overlap, and technologies may fall under more than one family. 

 

Technology family A – Robots (Articulated, Cylindrical, Cartesian, Dual Arm, SCARA) 

Definition: Technologies that sense and (autonomously) act based on data 

Although robots were initially imagined as autonomous and human-like in science fiction, their 
actual implementation reflects a series of incremental steps to integrate specific functionalities, e.g. 

initial efforts to develop software that could recognise and differentiate objects (e.g. wooden 
alphabet blocks led to the development of robot ‘hands’ and arms capable of arranging blocks or 
other objects). This basic capability was then further developed through the form of the robot 
during which the issue of robots and humans occupying the same space needed to be addressed (a 
robot that is sturdy enough to move large objects at speed is a potential hazard to human co-
workers). Robot mobility is almost inevitably linked with human presence (e.g. exceptions did exist 
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such as robots used to move into hazardous spaces such as nuclear accident sites) and also led to 
robots navigating different terrains and performing a few specialised functions (e.g. tunnel boring). 

 

Technology family B – Physical Data Acquisition Technologies 

Definition: technologies that harvest and record information  

Computer systems originated as engines for data processing. The data that they employed needed 
to be fed carefully prepared (in order to be machine readable), a process that began as translation 
of paper records and proceeded to direct entry by data terminals. More recently, a collection of 
technologies has been developed for data acquisition that do not require this careful preparation. 
These new technologies stem from the use of digital measurement devices in laboratories and the 
use of locational beacons (e.g. GPS). The sensory capabilities of these devise were extended outside 
of the laboratory in the world, paralleling the rise of computer vision applications in robotics. 

 

Technology family C – Software-based data management 

Definition: Technologies for storing, protecting, managing/handling and acquiring data 

The stores of data themselves became a site for innovation. What were once paper records 
generated by human activities became electronic records, audiovisual content became data 
streams and means of securing data became security and cryptographic innovations. The software 
used for these purposes is also included in this family. 

 

Technology family D – Computing 

Definition: Technologies used to compute/calculate 

Computers were initially employed to automate the work of ‘human computers’ and quickly 
exceeded human capabilities in computational tasks. As a consequence, several activities that were 
previously performed by humans such as compiling tables of the values of mathematical functions 
for different parameters (e.g. values of cosine by angle) are so well established that they are 
excluded here. Innovation in the architectures for data storage and for performing computations 
are still occurring and constitute this family. 

 

Technology family E – AI (not directly as a cloud service) & Intelligent Information System 

Definition: Technologies using algorithms and advanced methods to make sense out of the data 

The existence of large data stores (B) has opened a new range of computational capabilities 
commonly referred to as Artificial Intelligence (AI) which (so far) involves a collection of algorithms 

and some related hardware to implement machine learning. Machine learning has proven a 
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powerful means of addressing the older issue of machine vision and the previously unreachable 
goal of Natural Language Processing (NLP) as well as more limited goals such as speech recognition 
or production. 

 

Technology family F – Additive manufacturing (using any material) 

Definition: Technologies that produce bottom-up based on digital models 

A by-product of the development of mechanical and materials control for printing was the 
recognition that material objects could be ‘printed’ by precisely positioned deposits of material, 
what has come to be known as additive manufacturing. 

 

Technology family G – Networking 

Definition: Technologies for communicating between machines (data transmission) or connecting 

machines 

The distribution of data entry and computation created a demand for rapid and reliable data 
communication between computer systems and the technologies for performing this function are 
networking technologies. As new technologies from family B were developed, they came to employ 
networking technologies as well. Networking technologies employ both ‘wired’ (physical 
connection) and ‘wireless’ (connection using the radiofrequency spectrum) methods. The extension 
of these networks through ‘inter-networking’ led to the Internet and with the Internet previous 
technologies such as telephony and broadcast media were increasingly accomplished with data 
communications (as these previous technologies were already automated, their applications are 
omitted. The areas of active innovation in networking are the integration of technologies from 
family B into the Internet (hence IoT) and the use of mobile phones as both receivers of broadcasts 
and as interactive devices (e.g. for voice and text communication).  

It shall be noted that there are still areas where innovation is occurring that are not covered by IoT 
and 5G – e.g. edge networks and variants of the Internet protocol (e.g. IPv6). However, innovations 
in these areas are variants in the form of technology in already automated technologies and are 
therefore not directly implicated in employment (except to the extent that they extend or modify 
the skills needed to work in the data communications areas) 

 

Technology family H – User interface 

Definition: Technologies for human interaction with machines or data 

The interaction between humans and computational capabilities is achieved through human 

computer interfaces, an area of continuing innovation. The technologies under this heading reflect 
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those interactions that involve the presence of a human being exchanging information with a 
computer system through a variety of methods. 

 

 

This classification is used to divide the systematic literature review into different blocks of coherent 
literature. To study the properties of these technologies in relation to working tasks, we conduct a 
separate literature review for each of the nine technology families, following the same procedure 
described below. The prominent technologies within each family are used to construct detailed 
search queries to identify relevant literature at a rather fine-grained level of technological detail.  

8.2 Systematic literature review of automation technologies: the protocol 

The novelty of the rationale proposed here with respect to existing reviews of the literature on the 
impact of selected technologies on employment is the focus on the technical literature rather than 
the economic literature, to go beyond the coarse view that is available in current measures of, e.g., 
robots and AI. The focus on technical features of automation technologies, as described by 
academics working on them, has the power of offering a better understanding of the nature of 
human-machines interdependence, depending on the nature of the technology, the tasks they can 
perform, and on the nature of human-machine interactions.  

To this end, we followed a six-steps protocol, each including several sub-steps. It was first validated 
on robots, on which we have performed further checks (explained below). Figure -A shows the final 
sequence of steps, whereas Figure -A shows the sequence including the validation (on the literature 
on robots).  

This protocol was applied to and shown in this Appendix for robots and software-based data 
management (see Table -A). The protocol has been fully consistently applied to all other technology 
families though not reported here for reasons of space. 

8.2.1 Step 1: Identification of records: query 

Because we are not interested in the technological development per se, but in what the technology 
can do, and in particular what tasks that it can perform, we first build a query that is composed in 
the following way. We define three different sets of keywords, each identifying  

• the technologies in a given family (and synonymies),  
• their functions or applications, and  
• the tasks that they can perform.  

 

To increase the precision of the documents retrieved by the query, the three sets of terms were 
connected using the proximity operator (W/n) which requires terms in the three sets to be no more 
than n terms away. For instance, if n=2, the search would retrieve only documents in which the 



 

 

48 

technology term is followed (or preceded) by that term identifying the function at most two terms 
away, and the term identifying the task at most two terms away from the term identifying the 
function. In practice, this means that those three terms, on average, would appear in the same 
sentence of the abstract. 

The identification of relevant keywords for the three sets of terms is based on our technology 
classification and on additional keywords identified via relevant papers from the Scopus and/or 
from core papers in the literature which study these technologies, especially in relation to labour. 
Although we present here our protocol as a linear process, the refinement of queries was an iterative 
process that necessarily required expert assessment, also based on the documents retrieved by 
several queries. We also experimented with different values of n, ranging between one and three. 

 

8.2.2 Step 2: Identification of records: extraction of documents 

We applied the query in Scopus and downloaded all documents which  

● Were retrieved by our query (Step 1) in title, abstract, or keywords (TITLE-ABS-KEY) 

● Were Published after 2000 or 2010 (depending on the technology) ((PUBYEAR)). 

● Are among the following type of publication (DOCTYPE): article (ar) OR Conference 
Proceedings (cp), OR Conference Review (cr) OR review (re). We decided to include 
conference proceedings and reviews, despite the lack peer review quality check, because of 
the key goal of the analysis to capture emerging applications of technologies and the tasks 
they may be able to perform. 

● Include one or more keyword(s) among from the indexed terms (INDEXTERM), to restrict to 
specific technologies, when available in the engineering thesaurus used by the Ei 
Compendex.15 

We select the top X% of cited papers (normalized by year). The exact percentile is determined based 
on the size of the corpus of papers downloaded with the query; we aim at more or less 500 papers 
to be screened for each technology family. See Figure -A and Figure -A for details on the number of 
documents included and excluded in each step for robots and software based data management. 

 

8.2.3 Step 3: Screening: documents selection 

To create a sample of relevant documents to read and code for our literature review, we first 
screened the title and abstract of all the ~500 documents sampled in Step 2. Each paper was 
screened by two random reviewers independently.  

 
15 https://www.elsevier.com/about/press-releases/archive/science-and-technology/5th-edition-of-the-ei-

thesaurus-now-available 
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The five reviewers agreed on the following rule to include or exclude documents from the sample of 
relevant documents. They excluded documents that were conceptually describing a technology, 
documents which were describing abstracts proofs of concept, and documents which did not 
explicitly refer to the performance of specific tasks. For instance, in the case of robot technologies, 
in relation to tasks, we included documents that explicitly referred to the automation of tasks, or 
robotic control in specific domains, both supervised and unsupervised, and the interactions 
between humans and robots. We instead excluded document referring to basic research on 
robotics, basic research on the capacity to move, or sense, but without a specific explanation about 
the task, basic research on the performance interaction between robots, again without a specific 
description of the tasks performed. 
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Figure 2-A: Flow-chart of the literature review process (including robot validation) 
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Figure -A illustrates the above distinction, were the section labelled with 0 refers to documents that 
were excluded from the selected sample and 1 refers to documents that were included in the 
selected sample. 

 

Figure 3-A: Task criteria for excluding/including documents 

 

 

Instead, we included documents that describe the development of specific technologies, including 
proof of concepts that lead to such developments, documents that describe experiments of the 
technologies, and which refer to tasks. Figure -A provides a visual description of the criteria used to 
select screened documents based on their level of applicability. Below we define the four levels of 
applicability: 

● Conceptual – A new framework or approach is described and argued to be valuable 

● Proof-of-Concept – A particular approach is tested in a limited number of trials, sometimes 
with reference to existing practice but more commonly in relation to the claim made by the 
concept   

● Near-engineering – Proof of concept is implicit but further work is done to characterise and 
test the robustness of the solution in ways that would be useful in the development process 

● Experimental HCI – Explicit tests and co-design with users of new HCI approach. In one sense 
this is proof of concept but because it involves ‘live subjects’ it is likely to inform 
development efforts. 
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In case of disagreements between the two reviewers a third reviewer made the decision on whether 
to include or not the document in the selected sample. Extracted data included: title, abstract, 
keywords, authors, affiliation, journal, publication year, and type of study (article or research 
letter/comment/editorial). See Figure  and Figure  for details on the number of documents included 
and excluded in each step for robots and software based data management. 

 

Figure 4-A: Application criteria for excluding/including documents 

 

 

 

8.2.4 Step 4: Identification of records: query expansion 

Any strategy to select the literature on the basis of a string of keywords may identify documents that 
are not relevant to the topic (low precision) and not identify documents that are relevant to the 
topic (low recall). Low precision occurs because the terms used are too broad. For instance, “robots” 
may retrieve documents from science fiction. We controlled for precisions using a relatively complex 
query with proximity operators, and by manually screening titles and abstracts as described in the 
steps above. To control for recall (i.e. retrieve documents that were not found by our query, but 
which are relevant for a given technology), we exploited the engineering controlled terms, a set of 
keywords in the Scopus documents metadata assigned by librarians manually. engineering 

controlled terms provide a list of subject terms for the content of a document in a specific and 
consistent way, because they for a curated list of terms reviewed and standardised. According to 
Elsevier, “controlled terms are assigned by professional indexers to capture the concepts a 
document deals with in a standard manner”.16  

Although we did not have access to the "ei Thesaurus”, which is integrated in Scopus, for each 
document we retrieved the engineering controlled terms as part of the metadata. Only for the case 

 
16 https://www.sciencedirect.com/topics/computer-science/controlled-vocabulary 
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of robots, we examined different ways in which we could use this controlled vocabulary to identify 
an automatic way to select distinctive keywords for papers in the selected sample (after screening) 
(Figure -A). And then use these distinctive controlled terms to search for more paper in Scopus, 
which were assigned the same key terms, but which were not retrieved by our query.  

In the robot pilot test case, out of the 498 papers screened, 87 were included in the selected sample. 
These 87 papers have been labelled with a total number of 511 distinctive engineering controlled 
terms. The top ten most frequent terms are presented in Table -A as an example.  

 

Table 5-A: Top 10 most frequent engineering controlled terms for robot technologies 

Keywords n 
Robotics 29 

Robots 17 

Robot programming 9 

Industrial robots 8 

Intelligent robots 8 

Man machine systems 7 

Mobile robots 7 

Artificial intelligence 6 

Motion planning 6 

Agricultural robots 5 

Automation 5 

 

 

To identify engineering controlled terms that are specific to the 87 documents in the selected 
sample, and are not relevant for documents in the residual non-selected sample (411 documents) 
we used four different methods: 

o Balassa index (RCA): considering s a sample of documents s and k the engineering 
controlled terms, we define the RCA of a given engineering controlled term in a given 
sample of documents as the ratio between the normalized frequency of an 
engineering controlled term17 k in the sample s over the normalized total number of 
engineering controlled terms K in that set and the normalized frequency of the same 
engineering controlled term k in the whole sample of screened publications S over 

 
17 Because documents differ in relation to the number of key terms they are labelled with, and documents with 

more terms are more likely to be labelled against one term, we normalised the frequency (F) of engineering 
controlled terms by the number of engineering controlled term of each document. That is, if a document 
had 10 engineering controlled term, each term was assigned 1/10 as frequency; the same term was 
assigned 1/6 a document with 6 keywords.  
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the normalized total number of engineering controlled term in the whole sample of 
screened publications. Formally: 

    𝑅𝐶𝐴!" =
#!"/∑"#∈% #!"#

∑!#∈& #!#"/∑!#∈&,"#∈% #!#"#
  

 

where 𝐹!"  is the normalized frequency of engineering controlled term sets k and k' 
in the samples s and s’  

o We used two samples of documents, based on the screening (Step 3): the sample 
selected for final analysis and the sample of all documents excluded by at both 
reviewers.18  

o We consider the following set of engineering controlled terms that are specific to 
the selected sample: all terms in the sample of selected publications with RCA > 1.   

o Note that these indicators include engineering controlled terms that may appear 
both in the selected sample and in the excluded sample, but which are more 
common to appear in the selected sample, and therefore may characterize the topic 
of the sample that we manually selected as relevant. 

● Co-occurrence 

o We compute all combinations of two or more engineering controlled term that 
appear in any one document in the selected sample. 

o We consider the following two sets of engineering controlled terms that are specific 
to the selected sample: we restrict our analysis to the documents including at least 
3 or 4 terms out of the overall set of engineering controlled terms in the selected 
sample (excluding robots and robotics because they are too common also in the 
non-selected sample of documents, by construction). 

● Distinctive keywords: 

o We consider the set of engineering controlled terms that appear only in documents 
in the selected sample and not in documents in the non-selected sample.  

● Single keywords selected 

o We rank engineering controlled terms by their frequency in the selected sample of 
documents. We consider the set of engineering controlled terms with an absolute 
frequency higher or equal than 3 (top 6%). 

We then assess if any, or a combination, of these four methods and sets of engineering controlled 

terms distinguishes relevant documents in a larger corpus. If this were true, we could then use the 
selected set of engineering controlled terms to search in Scopus to expand our query to other 

 
18 We did not include documents excluded by one reviewer, because their non-relevance is more ambiguous. 
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relevant documents and increase recall. To do this assessment, we first manually screened the 865 
documents retrieved by our query (Step 1), not included among the 20% most cited (normalised by 
year) (Step 2),19 and retrieved by at least one of the four methods explained above to select 
engineering controlled terms. For the screening we followed the same procedure described in Step 
3.  

As a result of the manual screening, 124 documents were included in the selected sample by two 
reviewers (14%), 592 were excluded (68%), and 149 were included by only one reviewer (17%). The 
controversial papers were analysed by a third reviewer, who included 76 of those in the selected 
sample. In total, 200 papers out of the 865 were included in this selected sample (for the 80% least 
cited documents) by means of manual screening. 

We compared these documents allocated to the selected sample manually with the documents 
selected by each of the four methods (i.e. documents that contain engineering controlled terms in 
the sets selected by each of the methods). Results were not encouraging. 

Most documents (815) were retrieved by at least one of the methods – the most inclusive being the 
single keyword selection (79%; 682 documents) and the most selective being co-occurrence (33% 
for three keywords; 287 documents). The overlap between the sample of documents selected 
manually, and the sample of documents selected by the four methods is rather low. Only between 
32% (co-occurrence) and 78% (single keyword selected) of documents selected manually were also 
selected by any of the four methods. That is between 22%-68% of the documents selected manually, 
were not identified by any of our methods. Combining the four methods did not improve much the 
performance of the automatic methods to select relevant document in a larger corpus20. 

This pilot test on robots led to two important findings for our protocol. First, in relation to extending 
our initial query to other relevant papers in Scopus, the sparsity of engineering controlled terms (in 
the corpus of papers related to robots) is too high and their frequency too low to determine an 
automated method to select relevant documents.21 

Second, in relation to the choice of focusing on the top X% of top cited documents (normalized by 
years) the documents in the bottom 80% cover very similar topics to those covered by documents 
in the top 20%. There does not seem to be a substantial added value/information in considering all 
documents for screening.  

 

To extend our initial query, for all technologies, we thus followed a different strategy, which 
addresses the issue of the sparsity of the engineering controlled terms in the corpus of documents 
downloaded from Scopus. We identify relevant engineering controlled terms using Term Frequency 

 
19 That is, the bottom 80% least cited documents (normalised by year). 
20 Both pair-wise combinations and a higher number of concurrent methods were analysed. 
21 We also made an attempt using machine learning methods (Word2vec), but the size of the corpus is too 

small for the algorithm to recognise any pattern in the selected sample. 
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Inverse Document Frequency (TF-IDF). TF-IDF is a text mining technique used to identify relevant 
words in a corpus of text. It combines the frequency of a term in the corpus (TF),22 with their inverse 
document frequency (IDF), which measures the extent to which words are used frequently within a 
given document but not in the entire corpus of documents. By multiplying TF and IDF, we obtain the 
frequency of a term adjusted for how rarely it they are used. Where IDF is mathematically defined as 

 

𝐼𝐷𝐹(𝑡𝑒𝑟𝑚) 	= 	𝑙𝑛(
𝑛!"#$

𝑛!"#$	#"&'(&)&*	'+,-
) 

 

We first build the matrix of co-occurrences of all engineering controlled terms across the documents 
in our selected sample (in the top X%). Columns and rows are the engineering controlled terms, and 
the cells measure the number of documents in which each pair of engineering controlled terms 
appears together in the same document.  

We then compute the TF-IDF using the co-occurrence matrix in the following way. We consider the 
weighted combination of each engineering controlled terms with all the engineering controlled 
terms with which it appears as the record in which a term can appear – that is, all columns of the co-
occurrence matrix. In other words, we consider all the terms that appear together with each of the 
other engineering controlled terms in the same document. Table -A provides an example extracted 
from the case of software based data management. “State estimation” and “internet of things” in 
the rows both appear together with four other terms, but "internet of things” appear more 
frequently with some terms than with others, which means they will have a higher IDF. 

 

Table 6-A Extract of co-occurrence matrix of engineering controlled terms – Software-based data 
management 

 

5g mobile 
communication 
systems 

internet 
of things 

state 
estimati
on 

wireless 
sensor 
networks 

wireless 
telecommunication 
systems 

5g mobile 
communication 
systems 

0 2 1 2 1 

internet of things 2 0 1 3 2 

state estimation 1 1 0 1 1 

wireless sensor 
networks 2 3 1 0 2 

 
22 Measuring only how frequently a term occurs in documents would privilege terms that may not be as 

relevant to identify a specific corpus. For instance stop words, or in the case of the robot technology 
“robots”.  
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wireless 
telecommunication 
systems 

1 2 1 2 0 

 

Another way to look at this is to consider each engineering controlled term as a record, whose text 
is the sequence of all engineering controlled term with which it appears together in the same 
documents, repeated for the number of times they co-occur (as per the co-occurrence matrix). Table 
-A provides an example of these records for three engineering controlled terms included in Table -
A. 

 

Table 7-A From the co-occurrence matrix to TF-IDF records and terms 

Doc Text 

5g mobile 
communication 
systems 

internet of things, internet of things, state estimation, wireless sensor networks, 
wireless sensor networks, wireless telecommunication systems, quality control, 
global positioning system, optimization, quality of service, accident prevention, 
automotive industry, military applications, surveys, wireless local area networks 
(wlan) 

internet of 
things 

5g mobile communication systems, 5g mobile communication systems, state 
estimation, wireless sensor networks, wireless sensor networks, wireless sensor 
networks, wireless telecommunication systems, wireless telecommunication 
systems, automation, network architecture, network architecture, network 
security, sensor nodes, sensor nodes, sensor nodes, zigbee, process control, 
semantics, diseases, data privacy, distributed database systems, fog, fog, fog, fog, 
fog computing, fog computing, health care, health care, middleware, middleware, 
global positioning system, cloud computing, cloud computing, cloud computing, 
digital storage, digital storage, distributed computer systems, distributed computer 
systems, manufacture, data acquisition, data acquisition, optimization, security of 
data, quality of service, accident prevention, accident prevention, automotive 
industry, automotive industry, military applications, surveys, wireless local area 
networks (wlan), budget control, decision making, decision making, edge 
computing, edge computing, electric batteries, energy efficiency, green computing, 
job analysis, monitoring, parallel algorithms, solar cells, agriculture, heart, data 
handling, intelligent buildings, internet, web services, matrix algebra, embedded 
systems, agricultural robots, chemical sensors, gas detectors, knowledge based 
systems, gas sensing electrodes, risk assessment, data transfer, safety engineering, 
conducting polymers, design, integration, security systems, medical applications, 
remote patient monitoring, planning, urban growth, complex networks, intelligent 
systems, blood pressure, cardiology, patient treatment, infrastructure as a service 
(iaas), knowledge representation, multimedia services, multimedia systems  

state 
estimation 

5g mobile communication systems, internet of things, wireless sensor networks, 
wireless telecommunication systems, trees (mathematics), global positioning 
system, kalman filters, digital storage, vehicles, online systems, uncertainty 
analysis, cellular telephones, location based services, telecommunication services, 
mobile phones, telephone sets, probes, highway traffic control, hybrid systems, 
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lagrange multipliers, street traffic control, telecommunication equipment, traffic 
control 

 

We then compute TF as the number of times a term appears in the column (record), and IDF as the 
log of the share between the total number of columns (records) and the number of columns 
(columns) in which it appears (records). In this way, we consider both the frequency of a given 
engineering controlled term (TF) and a measure of their relevance in combination with other terms, 
that is, with how many other engineering controlled terms they appear together. For example, in 
Table -A the TF of the term “human” in the record (engineering controlled term) “article” is the ratio 
between n (its frequency) and the total number of terms in that record (total). The IDF instead is 
computed as the log of the ratio between the total number of records (2060) over the total number 
of records in which “human” appears (256), that it the total number of engineering controlled term 
with which “human” co-occur. 

 

Table 8-A: TF-IDF for extension query (example) 

Record Term n total tf idf tf_idf 

article human 14 331 0,042296 2,043213 0,08642 

human article 14 379 0,036939 2,158191 0,079722 

chemical 
sensors 

gas detectors 13 206 0,063107 2,967022 0,187239 

gas detectors chemical 
sensors 

13 158 0,082278 2,667617 0,219487 

process 
control 

sensors 12 256 0,046875 2,352347 0,110266 

sensors process 
control 

12 254 0,047244 2,372966 0,112109 

article priority journal 11 331 0,033233 2,245966 0,074639 

priority journal article 11 278 0,039568 2,158191 0,085396 

human priority journal 10 379 0,026385 2,245966 0,05926 

priority journal human 10 278 0,035971 2,043213 0,073497 

Note: Record is the name of the columns in the engineering controlled term co-occurrence matrix, that is all 
engineering controlled terms; Term is the list of engineering controlled term in the column of the engineering 
controlled term co-occurrence matrix (also all engineering controlled terms); n is the total number of times 
an engineering controlled term appears together with other engineering controlled terms; total is the number 
of times that all engineering controlled terms co-occur with an engineering controlled term; tf is term 
frequency as defined above; idf is Inverse Document Frequency as defined above; tf-idf is the product 
between tf and idf as defined above. 

 



 

 

59 

We use both TF and IDF to construct the expansion query, which is meant to identify additional areas 
of application of the technology that were not included in the string of keywords in our initial query. 
We build the query using two sets of engineering controlled terms. A set of ubiquitous terms, i.e., 
engineering controlled terms that are very frequent and appear in most of the documents in the 
selected sample, which we assume characterise the technology family of interest. And a set of 
relevant specific terms, i.e. engineering controlled terms that are specific to sub-technologies or 
sub-applications, which are frequent only in homogeneous subsets of the documents in the 
selected sample.  

The first set is identified ranking engineering controlled terms by term frequency (TF); the second 
set is identified ranking engineering controlled terms by inverse frequency (IDF). The selection is 
always manual, although informed by this methodology, as the expansion is meant to cover 
additional areas which might be missed by the initial query, hence human judgment is always 
needed. 

The full expansion query based on the engineering controlled terms is reported in Table -A. See 
Figure -A and Figure -A for details on the number of documents included and excluded in each step 
for robots and software based data management. 

 

8.2.5 Step 5: Identification and screening of expansion documents 

We repeat Steps 2 and 3 to download from Scopus the documents retrieved with the expansion 
query, select the top X% most cited (by year)23, and screen them to build a second sample of selected 
documents to be included in the literature review.  

 

8.2.6 Step 6: Reading and coding selected documents 

We finally read the text of all documents in the selected sample. A small share of these documents 
were discarded from the review because considered not relevant in relation to the criteria discussed 
under Step 4 when reading the full text, or because we could not find in electronic form to be 
downloaded. See Figure -A and Figure -A for details on the number of documents included and 
excluded in each step for robots and software based data management as examples of how the 
procedure was completed. The remaining papers were coded to capture the following features, 
when available. These are described at length in the text and recalled here for convenience:  

 

Emerging technologies, exposure and adoption: 

 
23 With X depending on the number of documents retrieved, aiming to screen around 500 documents 



 

 

60 

1. Level of Adoption of the technology: Depending on whether the technology is already used 
or not in industry.  
Values: low, medium or high.  

2. Development stage: Depending on the level of maturity of the technology described  
Values: conceptual; experimental; prototype; ready to deploy; mature  
 

Task Routinisation:  

3. Routinisation. This classifies the technology on the basis of the ability to perform a task 
without any human intervention, including the possibility that a task is further decomposed 
into an automated and humanly supervised segments 
Values: Yes; No 

4. Knowledge codification. This classifies the technology on the basis of the ability to make all 
instruction explicit (i.e. codified) without the use of any tacit knowledge (so far assumed as 
being a human-specific characteristic) 
Values: Yes; No 

5. Works with People/Symbols/Objects. This characterize the type of tasks that can be 
performed in terms of what the technology works with  
Values: People ("in-person" services (requires high soft skills)); Things (routine production 
services (does not require soft skills)); Symbols ("symbolic- analytic" services (does not 
require soft skills)) 

 

Technologies in relation with occupations and skills:  

6. Skills. Skills needed to use the technology 
Values: Low; Medium; High 

7. Substitute or complement. Whether the technology is meant to complement or substitute 
the human workers. In the documents reviewed, it is also possible to identify segments of 
tasks (or sub-tasks) that are replaced and others within the same task that are 
complemented. In these cases records are identified as substitute and complements.  
Values: Complement ; Substitute 

8. Time saving or product/process innovation. Whether the technology lead to mainly 
improvements on the quality of the product or service produced and/or on the production 
process (quantity, i.e. time saving) 
Values: Process; Product 

 

Sectors, firms, and geography categories 

9. Sector of application. This classifies technologies according to the main intended sector of 
use according to the 3-digit ISIC classification for manufacturing and 2-digit for other sectors 
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Values: 3-digit ISIC classification for manufacturing and 2-digit for other sectors. 
10. Task of application. This classifies technologies on the basis of the tasks they are intended 

to perform, classified based on the ONET work activities 
Values: See Table -A 

11. Geographical area of provenience: We record where the technology has been developed 
and mainly deployed, based on the UN M49 classification24 
Values: See Table -A 

12. Type of organizations: This question as left open to identify the different type of 
organizations for which the technology is intended 

13. Size of organisations: the typical size of the organisations for which the technology is 
intended 
Values: Micro<10 employees; Small<50 employees; Medium<500 employees; Large>550 
employees 

 

 

Table 9-A: Geographical area of the technology 

Geographical area 
015 Northern Africa 
202 Sub-Saharan Africa 
419 Latin America and the Caribbean 

021 Northern America 
010 Antarctica 
143 Central Asia 
030 Eastern Asia 
035 South-eastern Asia 
034 Southern Asia 
145 Western Asia 
151 Eastern Europe 
154 Northern Europe 
039 Southern Europe 
155 Western Europe 
009 Oceania 

 

 

 
24 This dimension is hard to codify as often the place/country of first development or application of the 

technology is not explicitly mentioned or deducible. When this is the case, the geographical area is 
attributed through the affiliation of the author. Because of this, we have not taken into consideration this 
category when looking at the results.  
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Table 10-A: ONET work activities 

ONET work activities 
Getting Information 
Monitor Processes, Materials, or Surroundings 
Identifying Objects, Actions, and Events 
Inspecting Equipment, Structures, or Material 
Estimating the Quantifiable Characteristics of Products, Events, or 
Information 
Judging the Qualities of Things, Services, or People 
Processing Information 
Evaluating Information to Determine Compliance with Standards 
Analyzing Data or Information 
Making Decisions and Solving Problems 
Thinking Creatively 
Updating and Using Relevant Knowledge 
Developing Objectives and Strategies 
Scheduling Work and Activities 
Organizing, Planning, and Prioritizing Work 
Performing General Physical Activities 
Handling and Moving Objects 
Controlling Machines and Processes 
Operating Vehicles, Mechanized Devices, or Equipment 
Interacting With Computers 
Repairing and Maintaining Mechanical Equipment 
Documenting/Recording Information 
Interpreting the Meaning of Information for Others 
Communicating with Supervisors, Peers, or Subordinates 
Communicating with Persons Outside Organization 
Establishing and Maintaining Interpersonal Relationships 
Assisting and Caring for Others 
Selling or Influencing Others 
Resolving Conflicts and Negotiating with Others 
Performing for or Working Directly with the Public 
Training and Teaching Others 
Guiding, Directing, and Motivating Subordinates 
Coaching and Developing Others 
Provide Consultation and Advice to Others 
Performing Administrative Activities 
Staffing Organizational Units 
Monitoring and Controlling Resources 
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Table 11-A: Search queries by automation technology family 

Code Technology First Query Expansion Notes 

A Robots TITLE-ABS-KEY ( ( robot* OR "human worker" ) W/2 ( 
process* OR routine OR task OR service ) W/2 ( 
automat* OR repetitive OR autonomous* OR smart OR 
intelligen* OR self-learn* OR interact OR recogn* OR 
weld OR control OR move OR clean OR walk OR carry 
OR detect OR drive OR predict OR detect OR identify 
OR determine OR control OR generate OR classify ) OR 
cobot* OR "co-bot*" OR "collaborative robot*" ) AND 
DOCTYPE ( ar OR cp OR cr OR re ) AND INDEXTERMS ( 
robot* ) AND PUBYEAR > 2000 

INDEXTERMS ( ( robotics AND robots ) AND ( automation 
OR "intelligent robots" OR "service robots" OR "mobile 
robots" OR "multi agent systems" OR "process control" ) 
AND ( "service industry" OR crops OR "information 
management" OR "risk management" OR "architectural 
design" OR personnel OR "large scale systems" OR aircraft 
OR welding OR navigation OR surgery OR assembly ) )  AND 
DOCTYPE ( ar OR cp OR cr OR re ) AND PUBYEAR > 2000 

 

• After 
2000 

• function 
include 
routine, 
task, 
process, 
service 

B Physical Data 
Acquisition 
Technologies 

Top 10% 

TITLE-ABS ( ( "Data 
Acquisition Tech*"  OR  
das  OR  daq  OR  dau  OR  
"Scanner*"  OR  
converter  OR  sensor  
OR  "Remote Sens*"  OR  
gps  OR  cctv  OR  
spectrometer*  OR  

Top 50% 

TITLE-ABS ( ( "Data 
Acquisition Tech*"  OR  das  
OR  daq  OR  dau  OR  
"Scanner*"  OR  converter  
OR  sensor  OR  "Remote 
Sens*"  OR  gps  OR  cctv  OR  
spectrometer*  OR  
"Polymerase chain 

Top 4% 

INDEXTERMS ( ( "data" )  AND  ( "in-situ measurement"  OR  
"mass spectrometry"  OR  "biosensors"  OR  "online 
monitoring"  OR  "data processing"  OR  "data 
correlations"  OR  microelectronics  OR  "spatial data 
infrastructure"  OR  "x ray diffraction" OR “Data handling” 
OR “smart process” )  AND  ("drug delivery"  OR  "industrial 
sensor"  OR  "weather forecasting"  OR  "microelectronics" 
OR “process control” OR “Remote sensing” OR “Quality 

• After 
2010 
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"Polymerase chain 
reaction"  OR  "x-ray"  
OR  "scanning electron 
microscope"  OR  
"Atomic force 
microscopy"  OR  
"scanning force 
microscopy"  OR  
"blood analyser"  OR  
microfluidics  OR  
tomography  OR  "blood 
oxygen monitor"  OR  
ekg  OR  mri  OR  
neuroimaging  OR  
dialysis  OR  "insulin 
pumps"  OR  "Cyber 
Physical Systems"  OR  
"Data Acquisition 
Systems"  OR  "Sensor 
node*"  OR  "Satellite 
imagery"  OR  radar  OR  
imaging  OR  "Computer 
Assisted Tomography"  
OR  "Laser scann*"  OR  
"Handheld scann*"  OR  

reaction"  OR  "x-ray"  OR  
"scanning electron 
microscope"  OR  "Atomic 
force microscopy"  OR  
"scanning force 
microscopy"  OR  "blood 
analyser"  OR  microfluidics  
OR  tomography  OR  "blood 
oxygen monitor"  OR  ekg  
OR  mri  OR  neuroimaging  
OR  dialysis  OR  "insulin 
pumps"  OR  "Cyber 
Physical Systems"  OR  
"Data Acquisition Systems"  
OR  "Sensor node*"  OR  
"Satellite imagery"  OR  
radar  OR  imaging  OR  
"Computer Assisted 
Tomography"  OR  "Laser 
scann*"  OR  "Handheld 
scann*"  OR  "Navigation 
System"  OR  "Satellite 
Navigation Aid"  OR  
photogrammetry  OR  
"Automatic Identification 

control” OR “environmental sensor” OR “automated 
visual inspection” OR “satellite imagery” OR “satellite 
sensor” OR “medical imaging” OR “body sensor 
networks” OR “hydraulic model” OR “weather forecast”) )  
AND  DOCTYPE ( ar  OR  cp  OR  cr  OR  re )  AND  PUBYEAR  
>  2010 
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"Navigation System"  
OR  "Satellite 
Navigation Aid"  OR  
photogrammetry  OR  
"Automatic 
Identification System"  
OR  "Surveillance 
Systems"  OR  "Medical 
Imaging"  OR  
"Laboratory 
Automation"  OR  radar  
OR  "microwave radar"  
OR  "millimiter wave 
radar"  OR  "image 
sensor"  OR  
"radiometer"  OR  
"radio wave" )  ( 
measurement  OR  
supervising  OR  
observing  OR  monitor*  
OR  acqui*  OR  autom*  
OR  scan*  OR  classif*  
OR  extract*  OR  
estimat*  OR  forecast*  
OR  diagnos*  OR  

System"  OR  "Surveillance 
Systems"  OR  "Medical 
Imaging"  OR  "Laboratory 
Automation"  OR  radar  OR  
"microwave radar"  OR  
"millimiter wave radar"  OR  
"image sensor"  OR  
"radiometer"  OR  "radio 
wave" )  ( measurement  OR  
supervising  OR  observing  
OR  monitor*  OR  acqui*  OR  
autom*  OR  scan*  OR  
classif*  OR  extract*  OR  
estimat*  OR  forecast*  OR  
diagnos*  OR  segment  OR  
track  OR  calibrat*  OR  
sequenc*  OR  conver*  OR  
process  OR  analyse  OR  
reconstruct  OR  scrap* )  
W/2  ( service  OR  inform  
OR  "quality control"  OR  
"process control" )  AND  ( 
task ) )  AND  DOCTYPE ( ar  
OR  cp  OR  cr  OR  re )  AND  
PUBYEAR  >  2010  AND  



 

 

66 

segment  OR  track  OR  
calibrat*  OR  sequenc*  
OR  conver*  OR  process  
OR  analyse  OR  
reconstruct  OR  scrap* )  
W/2  ( service  OR  inform  
OR  "quality control"  
OR  "process control" ) )  
AND  DOCTYPE ( ar  OR  
cp  OR  cr  OR  re )  AND  
PUBYEAR  >  2010  AND  
INDEXTERMS ( data*  OR  
sens* ) 

INDEXTERMS ( data*  OR  
sens* ) 

C Software-based 
Data 
management 

TITLE-ABS ( ( ( "Database system*"  OR  "Information 
Management"  OR  "Query process*"  OR  "Information 
retrieval"  OR  "Search engine*"  OR  "Digital storage"  
OR  "Relational Database"  OR  "Application 
Programming Interface"  OR  "Graph Database"  OR  
"Cryptograph*"  OR  "Data Security"  OR  "Blockchain"  
OR  "Data encrypt*"  OR  "Data privacy"  OR  "Network 
security"  OR  "Embedded system*"  OR  "Map-reduce"  
OR  "Mapreduce" )  W/2  ( automat*  OR  autonomous*  
OR  smart  OR  intelligen*  OR  "self-learn*"  OR  interact  
OR  recogn*  OR  clean  OR  detect  OR  predict  OR  

No automation, top 2% 

INDEXTERMS ( ( "data 
collection"  OR  "relational 
database"  OR  "digital 
storage"  OR  "distributed 
computer systems"  OR  
"data acquisition"  OR  "data 
processing"  OR  
"information management"  
OR  blockchain  OR  "network 

Automation as separate, 
50% 

INDEXTERMS ( automation  
AND  ( "data collection"  
OR  "relational database"  
OR  "digital storage"  OR  
"distributed computer 
systems"  OR  "data 
acquisition"  OR  "data 
processing"  OR  

• After 
2010 
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identify  OR  generate  OR  classify  OR  acqui*  OR  stor*  
OR  organi*  OR  access*  OR  retriev*  OR  extract*  OR  
maintain*  OR  convert*  OR  encod*  OR  decod*  OR  
encrypt*  OR  decrypt* )  

 W/2  ( manag*  OR  "problem solving"  OR  backoffice  
OR  "back office"  OR  organis* ) )  OR  ( ( data )  W/1  ( 
min*  OR  reduc*  OR  handl*  OR  integr*  OR  entr*  OR  
enter*  OR  report*  OR  clean* )  W/2  ( manag*  OR  
"problem solving"  OR  backoffice  OR  "back office"  
OR  organis* ) )  OR  ( ( "big data" )  W/1  ( analy* )  W/2  
( manag*  OR  "problem solving"  OR  backoffice  OR  
"back office"  OR  organis* ) ) )  AND  DOCTYPE ( ar  OR  
cp  OR  cr  OR  re )  AND  PUBYEAR  >  2000  AND  
INDEXTERMS ( data* )  

architecture"  OR  "real time 
systems" )  AND  ( "laboratory 
information management 
system"  OR  "image 
watermarks"  OR  
"information hiding"  OR  
"enterprise resource 
planning"  OR  "program 
processors"  OR  "copyright 
protection" OR 
"watermarking relational 
databases" OR "electronic 
document identification 
systems" OR "scheduling" 
OR "pervasive monitoring" 
"interactive querying" ) )  
AND  DOCTYPE ( ar  OR  cp  OR  
cr  OR  re )  AND  PUBYEAR  >  
2010  

"information 
management"  OR  
blockchain  OR  "network 
architecture"  OR  "real 
time systems" )  AND  ( 
"laboratory information 
management system"  OR  
"image watermarks"  OR  
"information hiding"  OR  
"enterprise resource 
planning"  OR  "program 
processors"  OR  
"copyright protection"  OR  
"watermarking relational 
databases"  OR  
"electronic document 
identification systems"  
OR  "scheduling"  OR  
"pervasive monitoring"  
OR  "interactive querying" 
) )  AND  DOCTYPE ( ar  OR  
cp  OR  cr  OR  re )  AND  
PUBYEAR  >  2010  
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D Computing Top 10% 

TITLE-ABS-KEY ( ("retrieval system"  OR  "cloud 
computing"  OR  "quantum computing"  OR  "Edge 
computing" OR “fog computing” OR neuromorphic 
OR “ubiquitous computing” OR  hpc  OR “cluster 
comput*” OR  "grid computing"  OR  "distributed 
computer system*" OR supercomput* OR super-
comput* OR “super comput*” OR “high performance 
comput*”)  W/4  (allocate* OR schedul* OR automat*  
OR efficien* OR autonomous*  OR  intelligen*  OR  
recogn*  OR  detect  OR  predict  OR  identify  OR   
retriev*  OR  extract*  OR  select  OR  estimat*  OR  
decide  OR  solv*  OR  forecast*  OR  simul*    OR  
optimis*  OR  stor*  OR  collect* OR calculate OR 
compu*)  W/3  (“problem solving”  OR “information 
management” OR “cognitive data management” OR 
“comput* capability” OR “comput* infrastructure” OR 
“resource schedul*” OR “flexible electronic*” OR  
“Large-scale Distributed System” OR “data 
visualization” OR “parallel application” OR “resource 
allocation” OR scheduling OR “iterative methods” OR 
“data storage” OR “drug discovery”) )  AND  DOCTYPE 
( ar  OR  cp  OR  cr  OR  re )  AND  PUBYEAR  >  2010  AND  
INDEXTERMS ( cloud  OR  comput* ) 

Top 7% 

INDEXTERMS ( ( cloud OR comput* ) AND 

("cloud computing" OR "digital storage" OR fog OR 
"distributed computer systems" OR "internet of things" 
OR "data storage" OR "computing capacity" OR "real-time 
application" OR "real time system" OR "smart cities" OR 
"evolution algorithms" OR "data centre" OR "scale 
modeling" OR "nonlinear programming" OR "heuristic 
algorithm" OR "scheduling algorithm" OR "service 
provider" OR "apache hadoop") AND 

("access control" OR "content distribution" OR "content 
management" OR "information modeling" OR "network-
intensive applications" OR "resource management" OR 
"collusion attack" OR "fault detection" OR "video 
streaming" OR "video recording" OR "software as a 
service" OR "parallel processing" OR "statistical learning" 
OR "image analysis" OR "performance anomaly" OR 
mhealth OR multitasking OR profitability 

) ) AND  DOCTYPE ( ar  OR  cp  OR  cr)  AND  PUBYEAR  >  2010  
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E AI (not directly 
as a cloud 
service) & 
Intelligent 
Information 
System 

TITLE-ABS-KEY ( ( "Artificial Intelligence"  OR  
"Machine learning"  OR  "deep learning"  OR  "neural 
networks"  OR  "support vector machine"  OR  
"supervised learning"  OR  "unsupervised learning" OR 
“Reinforcement learning” OR “Foundation model*” 
OR “GAN” OR “Generative adversarial network” OR 
“large language model*” OR LLM) OR ( (deep OR depth 
OR migration OR machine OR supervised OR 
unsupervised OR reinforcement OR network OR 
model OR transfer OR classifier OR algorithm) PRE/0 
(learn* OR train*) ) OR ( ( (r?cnn) OR (cnn AND 
convolut*) OR dbn OR dnn OR ann OR lstm OR rnn OR 
"u net" OR gan OR gru OR crf OR ssd OR svm OR 
capsule) AND (network OR model OR algorithm) ) OR ( 
( (recurrent OR recursive OR spike OR wavelet OR 
adversarial OR anti* OR deep OR belief OR capsule OR 
confrontation OR resistance OR countermeasure OR 
neural OR generative OR artificial OR convolut* OR 
elman OR rbf OR "feed forward") PRE/0 (network OR 
classifier OR classification) ) AND (train* OR learn*) ) 
OR ( ( incremental OR supervis* OR unsupervis* OR 
semi*supervis* OR machine OR deep OR depth OR 
statistical OR reinforcement OR ensemble) AND 
(learn*) AND (data*) AND (train*) ) OR ( (knn OR 
"nearest neighbor" OR "restrict* boltzmann" OR 

Top 10% 

INDEXTERMS ( ( "artificial intelligence" OR AI ) AND 
("machine learning" OR "feature select*" OR "learning 
system" OR "neural network" OR "decision tree" OR 
"detection method" OR "natural language processing" OR 
nlp OR "learning algorithm" OR "hidden markov models") 
OR ("adaptive boosting" OR "random forest" OR "markov 
models" OR "discriminant analysis" OR "support vector 
machine" OR svm OR "frequency domain analysis" OR 
"factorization model")  AND ("discriminative feature" OR  
"nearest neighbor" OR "decision making" OR "numerical 
model" OR "medical decision making" OR forecasting OR 
optimization OR prediction OR "predictive analytics" OR 
mapping OR "performance assessment" OR "damage 
detection" OR  decision theory OR sustainability OR 
"dynamical systems" OR "navigation system" OR "gene 
encoding" OR "gene expression" OR scheduling OR 
"classification accuracy" OR "pattern recognition" OR 
"pattern recognition problems" OR "real world 
environment" OR "urban planning" OR "behavioral 
research" OR "water management" OR "electricity 
market" OR "environmental management" OR "industry 
4.0" OR "construction" OR "human resource 
management" OR "e-learning" OR "activity analysis" OR 
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"random forest" OR "decision tree" OR "naive bayes" 
OR svm OR "support vector machine" OR "bayesian 
network" OR “gradient descent”) AND (learn* OR 
train*) ) OR ( (learn* OR train* OR predict*) AND ( (ml 
OR svm OR ai OR elm) W/1 (model OR algorithm) ) ) OR 
( (adaboost OR xgboost) AND (train* OR learn*) ) OR ( ( 
(machine OR computer) PRE/1 vision) ) OR ( ("self 
adapt*" OR adaptive OR intelligent OR "self learning" 
OR fuzzy OR pid OR plc OR "programmable logic") 
PRE/1 controller ) W/3  ( automat*  OR  autonomous*  
OR  intelligen*  OR  “self-learn*” OR  recogn*  OR  
detect  OR  predict  OR  identify  OR  classify  OR  
retriev*  OR  extract*  OR  select  OR  estimat*  OR  
decide  OR  solv*  OR  synthe*  OR  discriminat*  OR  
forecast*  OR  segment ) W/3 ( process  OR  “problem 
solving”  OR decision OR feature OR “Natural 
Language Processing”  OR  “Machine Vision”  OR  
“Image recognition”  OR  “Speech recogn*”  OR  “Text 
recogn*” OR “Pattern recogn*” OR “Pattern analysis” 
OR “Object detection” OR "machine translation" OR 
"grammar parser" OR "speech synthesis" OR 
"sentiment analysis" OR "sentiment score" OR "voice 
recogn*" OR "voiceprint recogn*" OR "feature 
extract*" OR classification OR "knowledge graph" OR 
"vector represent*" OR summar* OR "semantic 

"automatic detection" OR "medical image segmentation" 
OR "process control" OR "process monitoring" OR "supply 
chains" OR "precision agriculture" OR "electronic trading" 
OR transportation OR "object detection" OR health) ) AND  
DOCTYPE ( ar  OR  cp  OR  cr)  AND  PUBYEAR  >  2010 
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analysis" OR "semantic representation" OR "word 
segmentation" OR "text segmentation" OR "word 
embed*" OR "word vector" OR "key*word extract*" 
OR "key*phrase extract" OR "n*gram extract" OR 
"key*word search" OR "key*phrase search" OR OCR 
OR "optical recognition" OR "character recognition" 
OR "entity recognition" OR "object recognition" OR 
"expression recognition" OR "pattern recognition" OR 
"voiceprint recognition" OR "face recognition" OR 
"facial recognition" OR "automatic recognition" OR 
"speech recognition" OR "asr recognition") PRE/1 
recognition ) ) ) AND  DOCTYPE ( ar  OR  cp  OR  cr  OR  
re )  AND  PUBYEAR  >  2010  AND  INDEXTERMS ( 
"artificial intelligence" ) 

F Additive 
manufacturing 

Top 7% 

TITLE-ABS-KEY ( ( "Additive manufacturing"  OR  
"Additive layer manufacturing"  OR  "layered 
manufacturing"  OR  "three dimensional print*"  OR  
"3d print*"  OR  "3-d print*"  OR  "3d-printing"  OR  
"print* press*"  OR  "4d print*"  OR  bioprint*  OR  "bio-
print*"  OR  "acoustic levitation"  OR  "deposition 
model*"  OR  "Computer Aided Design"  OR  "Rapid 
prototyping" )  W/3  ( automat*  OR  autonomous*  OR  

 

INDEXTERMS ( ( "Additive Manufacturing"  OR  "3d print*"  
OR  "three dim* print*"  OR  "direct metal laser sintering"  
OR  dmls  OR  "selective laser sintering"  OR  sls  OR  "high 
pressure die casting"  OR  dmld  OR  "Direct Metal Laser 
Deposition"  OR  "fused deposition model*"  OR  
stereolithography  OR  "layered manufactur*" )  AND  ( 
textiles  OR  "methacrylic acid"  OR  eudragit  OR  
"transition metals"  OR  nanofiber  OR  "silk fibroin"  OR  
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intelligen*  OR  simul*  OR  design  OR  interact  OR  
extract*  OR  select  OR  print*  OR  synthe*  OR  model*  
OR  craft*  OR  press*  OR  fabricat*  OR  "product 
design"  OR  "tissue engineering"  OR  "material 
testing"  OR  construction  OR  microfluidics  OR  
aerospace  OR  integrat* )  W/3  ( process  OR  workflow  
OR  design  OR  prototype  OR  streamline  OR  "shape 
optimisation"  OR  "laser melting" ) )  AND  DOCTYPE ( 
ar  OR  cp  OR  cr  OR  re )  AND  PUBYEAR  >  2010  AND  
INDEXTERMS ( "Additive manufacturing"  OR  "3d 
print*" ) 

"batch production"  OR  "drug delivery"  OR  biology  OR  
"particle size analysis"  OR  "digital storage"  OR  "food 
processing"  OR  photopolymerization  OR  "tissue 
regeneration"  OR  "construction industry"  OR  bioink  OR  
lysine  OR  "food processing"  OR  electrochemistry  OR  
"surface treatment"  OR  polymers  OR  "ductile fracture"  
OR  "shape memory"  OR  construction  OR  concretes  OR  
"concrete construction"  OR  actuators  OR  "intelligent 
materials"  OR  carbides  OR  "hybrid materials"  OR  
"synthetic fibers"  OR  "textile fibers"  OR  "titanium 
compounds"  OR  "methacrylic acid derivative"  OR  "silk 
fibroin"  OR  "vinyl derivative"  OR  "aerospace industry"  
OR  "jet engines"  OR  "artificial organs"  OR  "dental 
equipment"  OR  "polymeric implants"  OR  
ophthalmology  OR  optics  OR  spectacles  OR  
"aeronautical components" ) )  AND  DOCTYPE ( ar  OR  cp  
OR  cr )  AND  PUBYEAR  >  2010  

 

G Networking Top 15% 

TITLE-ABS-KEY ( ( “Internet of Things”  OR  iot  OR  rfid  
OR  “radio frequency identification”  OR  “wireless 
telecommunication”  OR  “mobile communication” 
OR 5G OR  “wireless network*”  OR  “network 

INDEXTERMS ( ( "wireless 
sensor 
network"  OR  wsns  OR  "po
wer grids"  OR  "smart 
grid"  OR  "wireless 
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architecture” OR “wireless sensor networks” OR 
“telecommunication system*” OR zigbee OR “virtual 
private connection” OR “near-field comm*” OR NFC)  
W/4  ( automat*  OR  autonomous*  OR  intelligen*  OR  
recogn*  OR  detect  OR  identify  OR  retriev*  OR  
extract*  OR  select  OR  decide  OR  optimi*  OR  
communicat*  OR  schedule  OR  comm* OR “self-div*” 
OR agriculture OR warehouses OR “resource 
allocation” OR “information management” OR 
“network protocols” OR “radio broadcasting” OR 
“remote monitoring”)  W/4  ( process  OR  “problem 
solving”  OR  interoperability  OR  monitor* OR 
control* OR  broadcast OR connect* OR trasmission) )  
AND  DOCTYPE ( ar  OR  cp  OR  cr  OR  re )  AND  
PUBYEAR  >  2000  AND  INDEXTERMS ( network*  OR  
iot  OR  “internet of things”  OR  wireless  OR  comm* 
OR VPN OR NFC)  

 

 

sensor"  OR  "internet of 
things"  OR  iot  OR  "routing 
protocols"  OR  "distributed 
computer 
systems"    OR  "radio 
frequency 
identification"  OR  rfid  OR  "
mobile telecommunication 
systems"  OR  "mimo 
systems"  OR  "sensor 
communication"  OR  "vehic
ular sensor 
network"  OR  "vehicular 
wireless" OR internet 
)  AND  ( “scheduling” OR 
"signal 
processing"  OR  irrigation  O
R  middleware  OR  "smart 
city"  OR   "industrial 
management"  OR  "precisio
n agriculture"  OR  "financial 
transactions"  OR  "industria
l 
automation"  OR  parking  O
R  "micro-climate 
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monitoring"  OR  "urban 
traffic"  OR  "message 
transmissions"  OR  "water 
management"  OR  "sensing 
data" OR “patient 
monitoring” OR 
interoperability ) 
)  AND  DOCTYPE ( 
ar  OR  cp  OR  cr 
)  AND  PUBYEAR  >  2010 

H User interface Top 10% 

TITLE-ABS-KEY ( ( "user interface"  OR  "interactive 
computer system"  OR  "human engineering"  OR  
"computer interface"  OR  "augmented reality"   OR  
"mixed reality"  OR  "haptic interfaces"  OR  haptics  OR  
"computer aided interaction"  OR  haptic*  OR  
telehaptic*  OR  input  OR  "computer keyboards"   OR  
"virtual keyboards"  OR  "touch screens"  OR    mouse  
OR  "pen input"  OR  "pointing device*"  OR  "display 
device*"  OR  touchscreen*  OR  "touch screen*"  OR  
"display devices"  OR  "multi-touch"    OR  "sound 
synthesis"  OR  "noise cancellation"  OR  neuroscan*  
OR  neuro-scan*  OR  neuroimaging OR “motion 

 

INDEXTERMS ( ( "user interface" OR "human computer 
interaction" OR "Human Robot Interaction" OR 
"computer interface" OR "brain computer interface" OR 
"man machine system" OR "human engineering" OR 
"human machine interaction" OR "hci system" OR 
"human computer interfaces") AND ("augmented reality" 
OR "virtual reality" OR ergonomics OR "mixed reality" OR 
"mover's distance" OR "interface state" OR "helmet 
mounted displays" OR "three dimensional computer 
graphics" OR smartphones OR "depth camera" OR 
"graphical user interfaces" OR "interfaces computer") 
AND("hand shape" OR "hand detection" OR "eye tracking" 
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sensing” OR kiosk*)  W/3  ( automat*  OR  
autonomous*  OR  intelligen*  OR   interact  OR  
recogn*  OR  detect  OR  process  OR  identify  OR assist  
OR  display  OR  simul*  OR  synth*  OR  "E-learning" OR 
augment OR visual* OR scan OR “data acquisition” OR  
"computer music" OR display)  W/3  ( process  OR  
"problem solving" OR  interface OR engagement  OR  
"decision making"  OR  interaction))  AND  DOCTYPE 
(ar  OR  cp  OR  cr  OR  re)  AND  PUBYEAR  >  2010  AND  
INDEXTERMS (interface  OR  interact*  OR  reality ) 

OR "motion tracking" OR "palmprint recognition" OR 
"hand gesture" OR "hand-gesture recognition" OR 
"industrial research" OR "industry 4.0" OR "integration 
testing" OR "feature extractor" OR "temporal pooling" OR 
"visual surveillance" OR "image segmentation" OR 
"stereo image processing" OR "stereo vision" OR "spatial 
temporal" OR Kinect OR biomechanics OR "patient 
monitoring" OR prosthetics OR neurofeedback OR 
rehabilitation OR "computer game" OR "distance metrics" 
OR "shape matching" OR "emotion recognition" OR 
visualization OR diagnosis OR "person re identifications" 
OR ergonomics OR diseases OR "patient treatment" OR 
"roads and streets" OR vehicles OR "attention deficit 
disorder" ) ) AND DOCTYPE ( ar OR cp OR cr) AND PUBYEAR 
> 2010 
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Figure 5-A: Selection of documents for literature review: robots 
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Figure 6-A: Selection of documents for literature review: software based data management 

 

 

 


